scholarly journals Individual-based modeling of COVID-19 transmission in college communities

Author(s):  
Qimin Huang ◽  
Martial Ndeffo-Mbah ◽  
Anirban Mondal ◽  
Sara Lee ◽  
David Gurarie

The ongoing COVID-19 pandemic has created major public health and socio-economic challenges across the United States. Among them are challenges to the educational system where college administrators are struggling with the questions of how to reopen in-person activities while prioritizing student safety. To help address this challenge, we developed a flexible computational framework to model the spread and control of COVID-19 on a residential college campus. The modeling framework accounts for heterogeneity in social interactions, activities, disease progression, and control interventions. The relative contribution of classroom, dorm, and social activities to disease transmission were explored. We observed that the dorm has the highest contribution to disease transmission followed by classroom and social activities. Without vaccination, frequent (weekly) random testing coupled with risk reduction measures (e.g. facial mask,) in classroom, dorm, and social activities is the most effective control strategy to mitigate the spread of COVID-19 on college campuses. Moreover, since random screening testing allows for the successful and early detection of both asymptomatic and symptomatic individuals, it successfully reduces the transmission rate such that the maximum quarantine capacity is far lower than expected to further reduce the economic burden caused from quarantine. With vaccination, herd immunity is estimated to be achievable by 50% to 80% immunity coverage. In the absence of herd immunity, simulations indicate that it is optimal to keep some level of transmission risk reduction measures in classroom, dorm, and social activities, while testing at a lower frequency. Though our quantitative results are likely provisional on our model assumptions, extensive sensitivity analysis confirms the robustness of their qualitative nature.

2021 ◽  
Author(s):  
Kian Boon Law ◽  
Kalaiarasu M Peariasamy ◽  
Hishamshah Ibrahim ◽  
Noor Hisham Abdullah

Abstract The risk of contact infection among susceptible individuals in a randomly mixed population can be reduced by the presence of immune individuals and this principle forms the fundamental of herd immunity. The conventional susceptible-infectious-recovered (SIR) model features an infection-induced herd immunity model, but does not include the reducing risk of contact infection among susceptible individuals in the transmission model, therefore tends to overestimate the transmission dynamics of infectious diseases. Here we show that the reducing risk of contact infection among susceptible individuals can be achieved by incorporating the proportion of susceptible individuals (model A) or the inverse of proportion of recovered individuals (model B) in the force of infection of the SIR model. We numerically simulated the conventional SIR model and both new SIR models A and B under the exact condition with a basic reproduction number of 3·0. Prior to the numerical simulation, the threshold for the eradication of infectious disease through herd immunity was expected to be 0·667 (66·7%) for all three models. All three models performed likewise at the initial stage of disease transmission. In the conventional SIR model, the infectious disease subsided when 94·0 % of the population had been infected and recovered, way above the expected threshold for eradication and control of the infectious disease. Both models A and B simulated the infectious disease to diminish when 66·7% and 75·6% of the population had been infected, showing herd immunity might protect more susceptible individuals from the infectious disease as compared to the projection generated by the conventional SIR. Our study shows that model A provides a better framework for modelling herd immunity through vaccination, while model B provides a better framework for modelling herd immunity through infection. Both models overcome the insufficiency of the conventional SIR model in attaining the effect of herd immunity in modelling outputs, which is important and relevant for modelling infectious disease, such as the COVID-19 in a randomly mixed population.


2019 ◽  
Vol 116 (13) ◽  
pp. 6473-6481 ◽  
Author(s):  
Sherrie Xie ◽  
Alison L. Hill ◽  
Chris R. Rehmann ◽  
Michael Z. Levy

Bed bugs have reemerged in the United States and worldwide over recent decades, presenting a major challenge to both public health practitioners and housing authorities. A number of municipalities have proposed or initiated policies to stem the bed bug epidemic, but little guidance is available to evaluate them. One contentious policy is disclosure, whereby landlords are obligated to notify potential tenants of current or prior bed bug infestations. Aimed to protect tenants from leasing an infested rental unit, disclosure also creates a kind of quarantine, partially and temporarily removing infested units from the market. Here, we develop a mathematical model for the spread of bed bugs in a generalized rental market, calibrate it to parameters of bed bug dispersion and housing turnover, and use it to evaluate the costs and benefits of disclosure policies to landlords. We find disclosure to be an effective control policy to curb infestation prevalence. Over the short term (within 5 years), disclosure policies result in modest increases in cost to landlords, while over the long term, reductions of infestation prevalence lead, on average, to savings. These results are insensitive to different assumptions regarding the prevalence of infestation, rate of introduction of bed bugs from other municipalities, and the strength of the quarantine effect created by disclosure. Beyond its application to bed bugs, our model offers a framework to evaluate policies to curtail the spread of household pests and is appropriate for systems in which spillover effects result in highly nonlinear cost–benefit relationships.


2021 ◽  
Author(s):  
Abhishek Mallela ◽  
Jacob Neumann ◽  
Ely F Miller ◽  
Ye Chen ◽  
Richard G Posner ◽  
...  

Although many persons in the United States have acquired immunity to COVID-19, either through vaccination or infection with SARS-CoV-2, COVID-19 will pose an ongoing threat to non-immune persons so long as disease transmission continues. We can estimate when sustained disease transmission will end in a population by calculating the population-specific basic reproduction number R_0, the expected number of secondary cases generated by an infected person in the absence of any interventions. The value of R_0 relates to a herd immunity threshold (HIT), which is given by 1-1/R_0. When the immune fraction of a population exceeds this threshold, sustained disease transmission becomes exponentially unlikely (barring mutations allowing SARS-CoV-2 to escape immunity). Here, we report state-level R_0 estimates obtained using Bayesian inference. Maximum a posteriori estimates range from 7.1 for New Jersey to 2.3 for Wyoming, indicating that disease transmission varies considerably across states and that reaching herd immunity will be more difficult in some states than others. R_0 estimates were obtained from compartmental models via the next-generation matrix approach after each model was parameterized using regional daily confirmed case reports of COVID-19 from 21-January-2020 to 21-June-2020. Our R_0 estimates characterize infectiousness of ancestral strains, but they can be used to determine HITs for a distinct, currently dominant circulating strain, such as SARS-CoV-2 variant Delta (lineage B.1.617.2), if the relative infectiousness of the strain can be ascertained. On the basis of Delta-adjusted HITs, vaccination data, and seroprevalence survey data, we find that no state has achieved herd immunity as of 20-September-2021.


2020 ◽  
Author(s):  
Michelle Audirac ◽  
Mauricio Tec ◽  
Lauren Ancel Meyers ◽  
Spencer Fox ◽  
Cory Zigler

AbstractSARS-CoV-2 transmission continues to evolve in the United States following the large second wave in the Summer. Understanding how location-specific variations in non-pharmaceutical epidemic control policies and behaviors contributed to disease transmission will be key for designing effective strategies to avoid future resurgences. We offer a statistical analysis of the relative effectiveness of the timing of both official stay-at-home orders and population mobility reductions, offering a distinct (but complementary) dimension of evidence gleaned from more traditional mechanistic models of epidemic dynamics. Specifically, we use a Bayesian hierarchical model fit to county-level mortality data from the first wave of the pandemic from Jan 21 2020 through May 10 2020 to establish how timing of stay-at-home orders and population mobility changes impacted county-specific epidemic growth. We find that population mobility reductions generally preceded stay-at-home orders, and among 356 counties with a pronounced early local epidemic between January 21 and May 10 (representing 195 million people and 32,000 observed deaths), a 10 day delay in population mobility reduction would have added 16,149 (95% credible interval [CI] 9,517 24,381) deaths by Apr 20, whereas shifting mobility reductions 10 days earlier would have saved 13,571 (95% CI 8,449 16,930) lives. Analogous estimates attributable to the timing of explicit stay-at-home policies were less pronounced, suggesting that mobility changes were the clearer drivers of epidemic dynamics. Our results also suggest that the timing of mobility reductions and policies most impacted epidemic dynamics in larger, urban counties compared with smaller, rural ones. Overall, our results suggest that community behavioral changes had greater impact on curve flattening during the Spring wave compared with stay at home orders. Thus, community engagement and buy-in with precautionary policies may be more important for predicting transmission risk than explicit policies.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1586
Author(s):  
James M. Kincheloe ◽  
Dennis N. Makau ◽  
Scott J. Wells ◽  
Amy R. Horn-Delzer

CWD (chronic wasting disease) has emerged as one of the most important diseases of cervids and continues to adversely affect farmed and wild cervid populations, despite control and preventive measures. This study aims to use the current scientific understanding of CWD transmission and knowledge of farmed cervid operations to conduct a qualitative risk assessment for CWD transmission to cervid farms and, applying this risk assessment, systematically describe the CWD transmission risks experienced by CWD-positive farmed cervid operations in Minnesota and Wisconsin. A systematic review of literature related to CWD transmission informed our criteria to stratify CWD transmission risks to cervid operations into high-risk low uncertainty, moderate-risk high uncertainty, and negligible-risk low uncertainty categories. Case data from 34 CWD-positive farmed cervid operations in Minnesota and Wisconsin from 2002 to January 2019 were categorized by transmission risks exposure and evaluated for trends. The majority of case farms recorded high transmission risks (56%), which were likely sources of CWD, but many (44%) had only moderate or negligible transmission risks, including most of the herds (62%) detected since 2012. The presence of CWD-positive cervid farms with only moderate or low CWD transmission risks necessitates further investigation of these risks to inform effective control measures.


2011 ◽  
Vol 9 (68) ◽  
pp. 456-469 ◽  
Author(s):  
Simon Cauchemez ◽  
Neil M. Ferguson

Data collected during outbreaks are essential to better understand infectious disease transmission and design effective control strategies. But analysis of such data is challenging owing to the dependency between observations that is typically observed in an outbreak and to missing data. In this paper, we discuss strategies to tackle some of the ongoing challenges in the analysis of outbreak data. We present a relatively generic statistical model for the estimation of transmission risk factors, and discuss algorithms to estimate its parameters for different levels of missing data. We look at the problem of computational times for relatively large datasets and show how they can be reduced by appropriate use of discretization, sufficient statistics and some simple assumptions on the natural history of the disease. We also discuss approaches to integrate parametric model fitting and tree reconstruction methods in coherent statistical analyses. The methods are tested on both real and simulated datasets of large outbreaks in structured populations.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2076
Author(s):  
Haiyue Chen ◽  
Benedikt Haus ◽  
Paolo Mercorelli

Due to the worldwide outbreak of COVID-19, many strategies and models have been put forward by researchers who intend to control the current situation with the given means. In particular, compartmental models are being used to model and analyze the COVID-19 dynamics of different considered populations as Susceptible, Exposed, Infected and Recovered compartments (SEIR). This study derives control-oriented compartmental models of the pandemic, together with constructive control laws based on the Lyapunov theory. The paper presents the derivation of new vaccination and quarantining strategies, found using compartmental models and design methods from the field of Lyapunov theory. The Lyapunov theory offers the possibility to track desired trajectories, guaranteeing the stability of the controlled system. Computer simulations aid to demonstrate the efficacy of the results. Stabilizing control laws are obtained and analyzed for multiple variants of the model. The stability, constructivity, and feasibility are proven for each Lyapunov-like function. Obtaining the proof of practical stability for the controlled system, several interesting system properties such as herd immunity are shown. On the basis of a generalized SEIR model and an extended variant with additional Protected and Quarantined compartments, control strategies are conceived by using two fundamental system inputs, vaccination and quarantine, whose influence on the system is a crucial part of the model. Simulation results prove that Lyapunov-based approaches yield effective control of the disease transmission.


2021 ◽  
Author(s):  
Benjamin Rader ◽  
Christina M Astley ◽  
Kara Sewalk ◽  
Paul L Delamater ◽  
Kathryn Cordiano ◽  
...  

SARS-CoV-2 vaccine distribution is at risk of further propagating the inequities of COVID-19, which in the United States (US) has disproportionately impacted the elderly, people of color, and the medically vulnerable. We identify vaccine deserts - US Census tracts with localized, geographic barriers to vaccine-associated herd immunity - using a comprehensive supply database (VaccineFinder) and an empirically parameterized model of spatial access to essential resources. Incorporating high-resolution COVID-19 burden and time-willing-to-travel for vaccination, we show that early (February - March 2021) vaccine allocation disadvantaged rural and medically vulnerable populations. Data-driven vaccine distribution to vaccine deserts may improve immunization in the hesitant and control SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document