scholarly journals Heterogeneity in effective size across the genome: effects on the Inverse Instantaneous Coalescence Rate (IICR) and implications for demographic inference under linked selection.

2021 ◽  
Author(s):  
Simon Boitard ◽  
Armando Arredondo ◽  
Camille Noûs ◽  
Lounes Chikhi ◽  
Olivier Mazet

The relative contribution of selection and neutrality in shaping species genetic diversity is one of the most central and controversial questions in evolutionary theory. Genomic data provide growing evidence that linked selection, i.e. the modification of genetic diversity at neutral sites through linkage with selected sites, might be pervasive over the genome. Several studies proposed that linked selection could be modelled as first approximation by a local reduction (e.g. purifying selection, selective sweeps) or increase (e.g. balancing selection) of effective population size (Ne). At the genome-wide scale, this leads to a large variance of Ne from one region to another, reflecting the heterogeneity of selective constraints and recombination rates between regions. We investigate here the consequences of this variation of Ne on the genome-wide distribution of coalescence times. The underlying motivation concerns the impact of linked selection on demographic inference, because the distribution of coalescence times is at the heart of several important demographic inference approaches. Using the concept of Inverse Instantaneous Coalescence Rate, we demonstrate that in a panmictic population, linked selection always results in a spurious apparent decrease of Ne along time. Balancing selection has a particularly large effect, even when it concerns a very small part of the genome. We quantify the expected magnitude of the spurious decrease of Ne in humans and Drosophila melanogaster, based on Ne distributions inferred from real data in these species. We also find that the effect of linked selection can be significantly reduced by that of population structure.

2019 ◽  
Author(s):  
Kimberly J. Gilbert ◽  
Fanny Pouyet ◽  
Laurent Excoffier ◽  
Stephan Peischl

SummaryLinked selection is a major driver of genetic diversity. Selection against deleterious mutations removes linked neutral diversity (background selection, BGS, Charlesworth et al. 1993), creating a positive correlation between recombination rates and genetic diversity. Purifying selection against recessive variants, however, can also lead to associative overdominance (AOD, Ohta 1971, Zhao & Charlesworth, 2016), due to an apparent heterozygote advantage at linked neutral loci that opposes the loss of neutral diversity by BGS. Zhao & Charlesworth (2016) identified the conditions when AOD should dominate over BGS in a single-locus model and suggested that the effect of AOD could become stronger if multiple linked deleterious variants co-segregate. We present a model describing how and under which conditions multi-locus dynamics can amplify the effects of AOD. We derive the conditions for a transition from BGS to AOD due to pseudo-overdominance (Ohta & Kimura 1970), i.e. a form of balancing selection that maintains complementary deleterious haplotypes that mask the effect of recessive deleterious mutations. Simulations confirm these findings and show that multi-locus AOD can increase diversity in low recombination regions much more strongly than previously appreciated. While BGS is known to drive genome-wide diversity in humans (Pouyet et al. 2018), the observation of a resurgence of genetic diversity in regions of very low recombination is indicative of AOD. We identify 21 such regions in the human genome showing clear signals of multi-locus AOD. Our results demonstrate that AOD may play an important role in the evolution of low recombination regions of many species.


2021 ◽  
Author(s):  
María Ángeles Rodríguez de Cara ◽  
Paul Jay ◽  
Mathieu Chouteau ◽  
Annabel Whibley ◽  
Barbara Huber ◽  
...  

AbstractSelection shapes genetic diversity around target mutations, yet little is known about how selection on specific loci affects the genetic trajectories of populations, including their genome-wide patterns of diversity and demographic responses. Adaptive introgression provides a way to assess how adaptive evolution at one locus impacts whole-genome biology. Here we study the patterns of genetic variation and geographic structure in a neotropical butterfly, Heliconius numata, and its closely related allies in the so-called melpomene-silvaniform subclade. H. numata is known to have evolved a supergene via the introgression of an adaptive inversion about 2.2 million years ago, triggering a polymorphism maintained by balancing selection. This locus controls variation in wing patterns involved in mimicry associations with distinct groups of co-mimics, and butterflies show disassortative mate preferences and heterozygote advantage at this locus. We contrasted patterns of genetic diversity and structure 1) among extant polymorphic and monomorphic populations of H. numata, 2) between H. numata and its close relatives, and 3) between ancestral lineages in a phylogenetic framework. We show that H. numata populations which carry the introgressed inversions in a balanced polymorphism show markedly distinct patterns of diversity compared to all other taxa. They show the highest diversity and demographic estimates in the entire clade, as well as a remarkably low level of geographic structure and isolation by distance across the entire Amazon basin. By contrast, monomorphic populations of H. numata as well as its sister species and their ancestral lineages all show the lowest effective population sizes and genetic diversity in the clade, and higher levels of geographical structure across the continent. This suggests that the large effective population size of polymorphic populations could be a property associated with harbouring the supergene. Our results are consistent with the hypothesis that the adaptive introgression of the inversion triggered a shift from directional to balancing selection and a change in gene flow due to disassortative mating, causing a general increase in genetic diversity and the homogenisation of genomes at the continental scale.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Emmanuel A. Lozada-Soto ◽  
Christian Maltecca ◽  
Duc Lu ◽  
Stephen Miller ◽  
John B. Cole ◽  
...  

Abstract Background While the adoption of genomic evaluations in livestock has increased genetic gain rates, its effects on genetic diversity and accumulation of inbreeding have raised concerns in cattle populations. Increased inbreeding may affect fitness and decrease the mean performance for economically important traits, such as fertility and growth in beef cattle, with the age of inbreeding having a possible effect on the magnitude of inbreeding depression. The purpose of this study was to determine changes in genetic diversity as a result of the implementation of genomic selection in Angus cattle and quantify potential inbreeding depression effects of total pedigree and genomic inbreeding, and also to investigate the impact of recent and ancient inbreeding. Results We found that the yearly rate of inbreeding accumulation remained similar in sires and decreased significantly in dams since the implementation of genomic selection. Other measures such as effective population size and the effective number of chromosome segments show little evidence of a detrimental effect of using genomic selection strategies on the genetic diversity of beef cattle. We also quantified pedigree and genomic inbreeding depression for fertility and growth. While inbreeding did not affect fertility, an increase in pedigree or genomic inbreeding was associated with decreased birth weight, weaning weight, and post-weaning gain in both sexes. We also measured the impact of the age of inbreeding and found that recent inbreeding had a larger depressive effect on growth than ancient inbreeding. Conclusions In this study, we sought to quantify and understand the possible consequences of genomic selection on the genetic diversity of American Angus cattle. In both sires and dams, we found that, generally, genomic selection resulted in decreased rates of pedigree and genomic inbreeding accumulation and increased or sustained effective population sizes and number of independently segregating chromosome segments. We also found significant depressive effects of inbreeding accumulation on economically important growth traits, particularly with genomic and recent inbreeding.


2020 ◽  
Vol 117 (8) ◽  
pp. 4243-4251 ◽  
Author(s):  
Emily S. Bellis ◽  
Elizabeth A. Kelly ◽  
Claire M. Lorts ◽  
Huirong Gao ◽  
Victoria L. DeLeo ◽  
...  

Host–parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR–Cas9-edited sorghum further indicate that the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.


Agronomy ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 119 ◽  
Author(s):  
Petr Smýkal ◽  
Matthew Nelson ◽  
Jens Berger ◽  
Eric Von Wettberg

Humans have domesticated hundreds of plant and animal species as sources of food, fiber, forage, and tools over the past 12,000 years, with manifold effects on both human society and the genetic structure of the domesticated species. The outcomes of crop domestication were shaped by selection driven by human preferences, cultivation practices, and agricultural environments, as well as other population genetic processes flowing from the ensuing reduction in effective population size. It is obvious that any selection imposes a reduction of diversity, favoring preferred genotypes, such as nonshattering seeds or increased palatability. Furthermore, agricultural practices greatly reduced effective population sizes of crops, allowing genetic drift to alter genotype frequencies. Current advances in molecular technologies, particularly of genome sequencing, provide evidence of human selection acting on numerous loci during and after crop domestication. Population-level molecular analyses also enable us to clarify the demographic histories of the domestication process itself, which, together with expanded archaeological studies, can illuminate the origins of crops. Domesticated plant species are found in 160 taxonomic families. Approximately 2500 species have undergone some degree of domestication, and 250 species are considered to be fully domesticated. The evolutionary trajectory from wild to crop species is a complex process. Archaeological records suggest that there was a period of predomestication cultivation while humans first began the deliberate planting of wild stands that had favorable traits. Later, crops likely diversified as they were grown in new areas, sometimes beyond the climatic niche of their wild relatives. However, the speed and level of human intentionality during domestication remains a topic of active discussion. These processes led to the so-called domestication syndrome, that is, a group of traits that can arise through human preferences for ease of harvest and growth advantages under human propagation. These traits included reduced dispersal ability of seeds and fruits, changes to plant structure, and changes to plant defensive characteristics and palatability. Domestication implies the action of selective sweeps on standing genetic variation, as well as new genetic variation introduced via mutation or introgression. Furthermore, genetic bottlenecks during domestication or during founding events as crops moved away from their centers of origin may have further altered gene pools. To date, a few hundred genes and loci have been identified by classical genetic and association mapping as targets of domestication and postdomestication divergence. However, only a few of these have been characterized, and for even fewer is the role of the wild-type allele in natural populations understood. After domestication, only favorable haplotypes are retained around selected genes, which creates a genetic valley with extremely low genetic diversity. These “selective sweeps” can allow mildly deleterious alleles to come to fixation and may create a genetic load in the cultivated gene pool. Although the population-wide genomic consequences of domestication offer several predictions for levels of the genetic diversity in crops, our understanding of how this diversity corresponds to nutritional aspects of crops is not well understood. Many studies have found that modern cultivars have lower levels of key micronutrients and vitamins. We suspect that selection for palatability and increased yield at domestication and during postdomestication divergence exacerbated the low nutrient levels of many crops, although relatively little work has examined this question. Lack of diversity in modern germplasm may further limit our capacity to breed for higher nutrient levels, although little effort has gone into this beyond a handful of staple crops. This is an area where an understanding of domestication across many crop taxa may provide the necessary insight for breeding more nutritious crops in a rapidly changing world.


2012 ◽  
Vol 367 (1590) ◽  
pp. 793-799 ◽  
Author(s):  
Mark A. Jobling

The historical record tells us stories of migrations, population expansions and colonization events in the last few thousand years, but what was their demographic impact? Genetics can throw light on this issue, and has mostly done so through the maternally inherited mitochondrial DNA (mtDNA) and the male-specific Y chromosome. However, there are a number of problems, including marker ascertainment bias, possible influences of natural selection, and the obscuring layers of the palimpsest of historical and prehistorical events. Y-chromosomal lineages are particularly affected by genetic drift, which can be accentuated by recent social selection. A diversity of approaches to expansions in Europe is yielding insights into the histories of Phoenicians, Roma, Anglo-Saxons and Vikings, and new methods for producing and analysing genome-wide data hold much promise. The field would benefit from more consensus on appropriate methods, and better communication between geneticists and experts in other disciplines, such as history, archaeology and linguistics.


2019 ◽  
Vol 62 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Seyed Mohammad Ghoreishifar ◽  
Hossein Moradi-Shahrbabak ◽  
Nahid Parna ◽  
Pourya Davoudi ◽  
Majid Khansefid

Abstract. This research aimed to measure the extent of linkage disequilibrium (LD), effective population size (Ne), and runs of homozygosity (ROHs) in one of the major Iranian sheep breeds (Zandi) using 96 samples genotyped with Illumina Ovine SNP50 BeadChip. The amount of LD (r2) for single-nucleotide polymorphism (SNP) pairs in short distances (10–20 kb) was 0.21±0.25 but rapidly decreased to 0.10±0.16 by increasing the distance between SNP pairs (40–60 kb). The Ne of Zandi sheep in past (approximately 3500 generations ago) and recent (five generations ago) populations was estimated to be 6475 and 122, respectively. The ROH-based inbreeding was 0.023. We found 558 ROH regions, of which 37 % were relatively long (> 10 Mb). Compared with the rate of LD reduction in other species (e.g., cattle and pigs), in Zandi, it was reduced more rapidly by increasing the distance between SNP pairs. According to the LD pattern and high genetic diversity of Zandi sheep, we need to use an SNP panel with a higher density than Illumina Ovine SNP50 BeadChip for genomic selection and genome-wide association studies in this breed.


2017 ◽  
Author(s):  
Benjamin Laenen ◽  
Andrew Tedder ◽  
Michael D. Nowak ◽  
Per Toräng ◽  
Jörg Wunder ◽  
...  

Plant mating systems have profound effects on levels and structuring of genetic variation, and can affect the impact of natural selection. While theory predicts that intermediate outcrossing rates may allow plants to prevent accumulation of deleterious alleles, few studies have empirically tested this prediction using genomic data. Here, we study the effect of mating system on purifying selection by conducting population genomic analyses on whole-genome resequencing data from 38 European individuals of the arctic-alpine crucifer Arabis alpina. We find that outcrossing and mixed-mating populations maintain genetic diversity at similar levels, whereas highly self-fertilizing Scandinavian A. alpina show a strong reduction in genetic diversity, most likely as a result of a postglacial colonization bottleneck. We further find evidence for accumulation of genetic load in highly self-fertilizing populations, whereas the genome-wide impact of purifying selection does not differ greatly between mixed-mating and outcrossing populations. Our results demonstrate that intermediate levels of outcrossing may allow efficient selection against harmful alleles whereas demographic effects can be important for relaxed purifying selection in highly selfing populations. Thus, both mating system and demography shape the impact of purifying selection on genomic variation in A. alpina. These results are important for an improved understanding of the evolutionary consequences of mating system variation and the maintenance of mixed-mating strategies.SignificanceIntermediate outcrossing rates are theoretically predicted to maintain effective selection against harmful alleles, but few studies have empirically tested this prediction using genomic data. We used whole-genome resequencing data from alpine rock-cress to study how genetic variation and purifying selection vary with mating system. We find that populations with intermediate outcrossing rates have similar levels of genetic diversity as outcrossing populations, and that purifying selection against harmful alleles is efficient in mixed-mating populations. In contrast, self-fertilizing populations from Scandinavia have strongly reduced genetic diversity, and accumulate harmful mutations, likely as a result of demographic effects of postglacial colonization. Our results suggest that mixed-mating populations can avoid the negative evolutionary consequences of high self-fertilization rates.


2016 ◽  
Author(s):  
Simon Henry Martin ◽  
Markus Moest ◽  
Wiliam J Palmer ◽  
Camilo Salazar ◽  
W. Owen McMillan ◽  
...  

A combination of selective and neutral evolutionary forces shape patterns of genetic diversity in nature. Among the insects, most previous analyses of the roles of drift and selection in shaping variation across the genome have focused on the genus Drosophila. A more complete understanding of these forces will come from analysing other taxa that differ in population demography and other aspects of biology. We have analysed diversity and signatures of selection in the neotropical Heliconius butterflies using resequenced genomes from 58 wild-caught individuals of H. melpomene, and another 21 resequenced genomes representing 11 related species. By comparing intra-specific diversity and inter-specific divergence, we estimate that 31% of amino acid substitutions between Heliconius species are adaptive. Diversity at putatively neutral sites is negatively correlated with gene density and positively correlated with recombination rate, indicating widespread linked selection. This process also manifests in significantly reduced diversity on longer chromosomes, consistent with lower recombination rates. Genetic hitchhiking around beneficial non-synonymous mutations has also had a significant impact on genetic variation in this species, but evidence for strong selective sweeps was limited overall. We did however identify two regions where distinct haplotypes have swept in different populations, leading to increased population differentiation. On the whole, our study suggests that positive selection is less pervasive in these butterflies as compared to fruit flies; a fact that curiously results in very similar levels of neutral diversity in these very different insects.


2019 ◽  
Author(s):  
Jing Wang ◽  
Nathaniel R. Street ◽  
Eung-Jun Park ◽  
Jianquan Liu ◽  
Pär K. Ingvarsson

AbstractIncreasing our understanding of how various evolutionary processes drive the genomic landscape of variation is fundamental to a better understanding of the genomic consequences of speciation. However, the genome-wide patterns of within- and between-species variation have not been fully investigated in most forest tree species despite their global ecological and economic importance. Here, we use whole-genome resequencing data from four Populus species spanning the speciation continuum to reconstruct their demographic histories, investigate patterns of diversity and divergence, infer their genealogical relationships and estimate the extent of ancient introgression across the genome. Our results show substantial variation in these patterns along the genomes although this variation is not randomly distributed but is strongly predicted by the local recombination rates and the density of functional elements. This implies that the interaction between recurrent selection and intrinsic genomic features has dramatically sculpted the genomic landscape over long periods of time. In addition, our findings provide evidence that, apart from background selection, recent positive selection and long-term balancing selection are also crucial components in shaping patterns of genome-wide variation during the speciation process.


Sign in / Sign up

Export Citation Format

Share Document