scholarly journals Inhibition of N-myristoyltransferase Promotes Naive Pluripotency in Mouse and Human Pluripotent Stem Cells

2021 ◽  
Author(s):  
Junko Yoshida ◽  
Hitomi Watanabe ◽  
Kaori Yamauchi ◽  
Takumi Nishikubo ◽  
Ayako Isotani ◽  
...  

Naive and primed states are distinct states of pluripotency during early embryonic development that can be captured and converted to each other in vitro. To elucidate the regulatory mechanism of pluripotency, we performed a recessive genetic screen of homozygous mutant mouse embryonic stem cells (mESCs) and found that suppression of N-myristoyltransferase (Nmt) promotes naive pluripotency. Disruption of Nmt1 in mESCs conferred resistance to differentiation. Suppression of Nmt in mouse epiblast stem cells (mEpiSCs) promoted the conversion from the primed to the naive state. This effect was independent of Src, which is a major substrate of Nmt and is known to promote differentiation of mESCs. Suppression of Nmt in naive-state human induced pluripotent stem cells (hiPSCs) increased the expression of the naive-state marker. These results indicate that Nmt is a novel target for the regulation of naive pluripotency conserved between mice and humans.

2020 ◽  
Vol 15 (4) ◽  
pp. 301-307 ◽  
Author(s):  
Gaifang Wang ◽  
Maryam Farzaneh

Primary Ovarian Insufficiency (POI) is one of the main diseases causing female infertility that occurs in about 1% of women between 30-40 years of age. There are few effective methods for the treatment of women with POI. In the past few years, stem cell-based therapy as one of the most highly investigated new therapies has emerged as a promising strategy for the treatment of POI. Human pluripotent stem cells (hPSCs) can self-renew indefinitely and differentiate into any type of cell. Human Embryonic Stem Cells (hESCs) as a type of pluripotent stem cells are the most powerful candidate for the treatment of POI. Human-induced Pluripotent Stem Cells (hiPSCs) are derived from adult somatic cells by the treatment with exogenous defined factors to create an embryonic-like pluripotent state. Both hiPSCs and hESCs can proliferate and give rise to ectodermal, mesodermal, endodermal, and germ cell lineages. After ovarian stimulation, the number of available oocytes is limited and the yield of total oocytes with high quality is low. Therefore, a robust and reproducible in-vitro culture system that supports the differentiation of human oocytes from PSCs is necessary. Very few studies have focused on the derivation of oocyte-like cells from hiPSCs and the details of hPSCs differentiation into oocytes have not been fully investigated. Therefore, in this review, we focus on the differentiation potential of hPSCs into human oocyte-like cells.


Cell Research ◽  
2021 ◽  
Author(s):  
Xiaoxiao Wang ◽  
Yunlong Xiang ◽  
Yang Yu ◽  
Ran Wang ◽  
Yu Zhang ◽  
...  

AbstractThe pluripotency of mammalian early and late epiblast could be recapitulated by naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), respectively. However, these two states of pluripotency may not be sufficient to reflect the full complexity and developmental potency of the epiblast during mammalian early development. Here we report the establishment of self-renewing formative pluripotent stem cells (fPSCs) which manifest features of epiblast cells poised for gastrulation. fPSCs can be established from different mouse ESCs, pre-/early-gastrula epiblasts and induced PSCs. Similar to pre-/early-gastrula epiblasts, fPSCs show the transcriptomic features of formative pluripotency, which are distinct from naïve ESCs and primed EpiSCs. fPSCs show the unique epigenetic states of E6.5 epiblast, including the super-bivalency of a large set of developmental genes. Just like epiblast cells immediately before gastrulation, fPSCs can efficiently differentiate into three germ layers and primordial germ cells (PGCs) in vitro. Thus, fPSCs highlight the feasibility of using PSCs to explore the development of mammalian epiblast.


2016 ◽  
Vol 4 (20) ◽  
pp. 3482-3489 ◽  
Author(s):  
Giuliana E. Salazar-Noratto ◽  
Frank P. Barry ◽  
Robert E. Guldberg

Disease-specific pluripotent stem cells can be derived through genetic manipulation of embryonic stem cells or by reprogramming somatic cells (induced pluripotent stem cells).


2020 ◽  
Author(s):  
Jiaxing Wang ◽  
Ping Long ◽  
Shengnan Tian ◽  
Weihua Zu ◽  
Jing Liu ◽  
...  

Abstract Background Extravillous trophoblast (EVT) cells play an essential role in the maternal-fetal interaction. Although abnormal development and function of EVT cells, including impaired migration and invasion capability, are believed to be etiologically linked to severe pregnancy disorders including pre-eclampsia (PE), the associated molecular mechanisms are not clear ascribed to the lack of an appropriate cell model in vitro. Cyclosporine A (CsA) is a macrolide immunosuppressant and is also used in clinic to improve pregnancy outcomes. However, whether CsA has any effects on the function of EVT cells has not been well investigated. Methods In this study, we induced differentiation of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) into EVT cells (hiPSC-EVT and hESC-EVT cells, respectively) by Y27632, NRG1, A83-01 and matrigel, and collected these derived EVT cells by flow cytometry for sorting cells positive for double HLA-G and KRT7, which are EVT markers. We then investigated the effects of CsA on the invasion and migration of these derived EVT cells. Results We found that the hiPSC-EVT and hESC-EVT cells expressed high levels of the EVT markers such as KRT7, ITGA5 and HLA-G but low levels of OCT4, a stem cell marker, and that CsA significantly promoted the invasion and migration of hiPSC-EVT and hESC-EVT cells. Conclusions We successfully generated hiPSC/hESC-derived human EVT cells, which may be applicable for investigating the remodeling process of spiral arteries remodeling and the possible mechanisms of EVT-related diseases in vitro. Furthermore, our findings provide direct evidence that CsA regulates the function of EVT cells and molecular basis by which CsA may be used to treat pregnancy complications in clinic associated with deficient EVT function.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Debora Salerno ◽  
Alessandro Rosa

Human pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells, represent powerful tools for disease modeling and for therapeutic applications. PSCs are particularly useful for the study of development and diseases of the nervous system. However, generating in vitro models that recapitulate the architecture and the full variety of subtypes of cells that make the complexity of our brain remains a challenge. In order to fully exploit the potential of PSCs, advanced methods that facilitate the identification of molecular signatures in neural differentiation and neurological diseases are highly demanded. Here, we review the literature on the development and application of digital color-coded molecular barcoding as a potential tool for standardizing PSC research and applications in neuroscience. We will also describe relevant examples of the use of this technique for the characterization of the heterogeneous composition of the brain tumor glioblastoma multiforme.


Author(s):  
Moning Liu ◽  
Lixia Zhao ◽  
Zixin Wang ◽  
Hong Su ◽  
Tong Wang ◽  
...  

Pluripotent stem cells (PSCs) have the potential to differentiate to all cell types of an adult individual and are useful for studying mammalian development. Establishing induced pluripotent stem cells (iPSCs) capable of expressing pluripotent genes and differentiating to three germ layers will not only help to explain the mechanisms underlying somatic reprogramming but also lay the foundation for the establishment of sheep embryonic stem cells (ESCs) in vitro. In this study, sheep somatic cells were reprogrammed in vitro into sheep iPSCs with stable morphology, pluripotent marker expression, and differentiation ability, delivered by piggyBac transposon system with eight doxycycline (DOX)-inducible exogenous reprogramming factors: bovine OCT4, SOX2, KLF4, cMYC, porcine NANOG, human LIN28, SV40 large T antigen, and human TERT. Sheep iPSCs exhibited a chimeric contribution to the early blastocysts of sheep and mice and E6.5 mouse embryos in vitro. A transcriptome analysis revealed the pluripotent characteristics of somatic reprogramming and insights into sheep iPSCs. This study provides an ideal experimental material for further study of the construction of totipotent ESCs in sheep.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Katharina Seiler ◽  
Motokazu Tsuneto ◽  
Fritz Melchers

We review here our experiences with thein vitroreprogramming of somatic cells to induced pluripotent stem cells (iPSC) and subsequentin vitrodevelopment of hematopoietic cells from these iPSC and from embryonic stem cells (ESC). While, in principle, thein vitroreprogramming and subsequent differentiation can generate hematopoietic cell from any somatic cells, it is evident that many of the steps in this process need to be significantly improved before it can be applied to human cells and used in clinical settings of hematopoietic stem cell (HSC) transplantations.


2018 ◽  
Vol 373 (1750) ◽  
pp. 20170214 ◽  
Author(s):  
Sarah F. McComish ◽  
Maeve A. Caldwell

Effective and efficient generation of human neural stem cells and subsequently functional neural populations from pluripotent stem cells has facilitated advancements in the study of human development and disease modelling. This review will discuss the established protocols for the generation of defined neural populations including regionalized neurons and astrocytes, oligodendrocytes and microglia. Early protocols were established in embryonic stem cells (ESC) but the discovery of induced pluripotent stem cells (iPSC) in 2006 provided a new platform for modelling human disorders of the central nervous system (CNS). The ability to produce patient- and disease-specific iPSC lines has created a new age of disease modelling. Human iPSC may be derived from adult somatic cells and subsequently patterned into numerous distinct cell types. The ability to derive defined and regionalized neural populations from iPSC provides a powerful in vitro model of CNS disorders. This article is part of the theme issue ‘Designer human tissue: coming to a lab near you’.


Sign in / Sign up

Export Citation Format

Share Document