scholarly journals Innate, translation-dependent silencing of an invasive transposon in Arabidopsis

2021 ◽  
Author(s):  
Stefan Oberlin ◽  
Rajendran Rajeswaran ◽  
Marieke Trasser ◽  
Veronica Barragan-Borrero ◽  
Michael A Schon ◽  
...  

Co-evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence-degeneration and, ultimately, loss-of-autonomy of most transposable elements (TEs). Recognition of newly-invasive plant TEs, by contrast, involves an innate antiviral-like silencing response. To investigate this response’s activation, we studied the single-copy element EVADÉ (EVD), one of few representatives of the large Ty1/Copia family able to proliferate in Arabidopsis when epigenetically-reactivated. In Ty1/Copia-elements, a short subgenomic mRNA (shGAG) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full-length genomic flGAG-POL. We show here that the predominant cytosolic distribution of shGAG strongly favors its translation over mostly-nuclear flGAG-POL, during which an unusually intense ribosomal stalling event coincides precisely with the starting-point of sRNA production exclusively on shGAG. mRNA breakage occurring at this starting-point yields unconventional 5’OH RNA fragments that evade RNA-quality-control and concomitantly likely stimulate RNA-DEPENDENT-RNA-POLYMERASE-6 (RDR6) to initiate sRNA production. This hitherto-unrecognized “translation-dependent silencing” (TdS) is independent of codon-usage or GC-content and is not observed on TE remnants populating the Arabidopsis genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against de novo invasive TEs that underlies their associated sRNA patterns.

2018 ◽  
Author(s):  
Jeffrey S. McLean ◽  
Batbileg Bor ◽  
Thao T. To ◽  
Quanhui Liu ◽  
Kristopher A. Kerns ◽  
...  

ABSTRACTRecently, we discovered that a member of the Saccharibacteria/TM7 phylum (strain TM7x) isolated from the human oral cavity, has an ultra-small cell size (200-300nm), a highly reduced genome (705 Kbp) with limited de novo biosynthetic capabilities, and a very novel lifestyle as an obligate epibiont on the surface of another bacterium 1. There has been considerable interest in uncultivated phyla, particularly those that are now classified as the proposed candidate phyla radiation (CPR) reported to include 35 or more phyla and are estimated to make up nearly 15% of the domain Bacteria. Most members of the larger CPR group share genomic properties with Saccharibacteria including reduced genomes (<1Mbp) and lack of biosynthetic capabilities, yet to date, strain TM7x represents the only member of the CPR that has been cultivated and is one of only three CPR routinely detected in the human body. Through small subunit ribosomal RNA (SSU rRNA) gene surveys, members of the Saccharibacteria phylum are reported in many environments as well as within a diversity of host species and have been shown to increase dramatically in human oral and gut diseases. With a single copy of the 16S rRNA gene resolved on a few limited genomes, their absolute abundance is most often underestimated and their potential role in disease pathogenesis is therefore underappreciated. Despite being an obligate parasite dependent on other bacteria, six groups (G1-G6) are recognized using SSU rRNA gene phylogeny in the oral cavity alone. At present, only genomes from the G1 group, which includes related and remarkably syntenic environmental and human oral associated representatives1, have been uncovered to date. In this study we systematically captured the spectrum of known diversity in this phylum by reconstructing completely novel Class level genomes belonging to groups G3, G6 and G5 through cultivation enrichment and/or metagenomic binning from humans and mammalian rumen. Additional genomes for representatives of G1 were also obtained from modern oral plaque and ancient dental calculus. Comparative analysis revealed remarkable divergence in the host-associated members across this phylum. Within the human oral cavity alone, variation in as much as 70% of the genes from nearest oral clade (AAI 50%) as well as wide GC content variation is evident in these newly captured divergent members (G3, G5 and G6) with no environmental relatives. Comparative analyses suggest independent episodes of transmission of these TM7 groups into humans and convergent evolution of several key functions during adaptation within hosts. In addition, we provide evidence from in vivo collected samples that each of these major groups are ultra-small in size and are found attached to larger cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Junjun Yao ◽  
Fangyu Zhao ◽  
Yuanjiang Xu ◽  
Kaihui Zhao ◽  
Hong Quan ◽  
...  

Dracocephalum tanguticum and Dracocephalum moldavica are important herbs from Lamiaceae and have great medicinal value. We used the Illumina sequencing technology to sequence the complete chloroplast genome of D. tanguticum and D. moldavica and then conducted de novo assembly. The two chloroplast genomes have a typical quadripartite structure, with the gene’s lengths of 82,221 bp and 81,450 bp, large single-copy region’s (LSC) lengths of 82,221 bp and 81,450 bp, and small single-copy region’s (SSC) lengths of 17,363 bp and 17,066 bp, inverted repeat region’s (IR) lengths of 51,370 bp and 51,352 bp, respectively. The GC content of the two chloroplast genomes was 37.80% and 37.83%, respectively. The chloroplast genomes of the two plants encode 133 and 132 genes, respectively, among which there are 88 and 87 protein-coding genes, respectively, as well as 37 tRNA genes and 8 rRNA genes. Among them, the rps2 gene is unique to D. tanguticum, which is not found in D. moldavica. Through SSR analysis, we also found 6 mutation hotspot regions, which can be used as molecular markers for taxonomic studies. Phylogenetic analysis showed that Dracocephalum was more closely related to Mentha.


2020 ◽  
Author(s):  
Le Wang ◽  
Li Wang ◽  
Zhihong Guo

Abstract Background: Tamarix ramosissima is a deciduous shrub resided in arid and semi-arid regions. Although of ecological and medicinal values, some Tamarix species are considered invasive as they have dominated the riparian zones of dryland in some parts of the world. Chloroplast (cp) DNA is highly conserved in structure and gene arrangement, making cp genomic data valuable resources for species delimitation and phylogenetics. The cp genome of T. ramosissima was de novo assembled with the aim of providing reference and data resource for further cp-derived marker development and species delimitation of Tamarix.Results: Here, the complete chloroplast (CP) genome of T. ramosissima was sequenced and analyzed, showing a size of 156150 bp and a GC content of 36.5%. The plastome displayed a typical quadripartite structure, consisting of a pair of inverted repeat (IR) regions of 26554 bp, separated by a large single copy (LSC) region of 84795 bp, and a small single copy (SSC) region of 18247 bp. The cp genome encoded 130 genes, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. A total of 32 repeat sequences and 64 simple sequence repeats (SSR) were identified in the plastome, and an obvious A/T bias was observed in the majority of the SSRs detected. By comparing the T. ramosissima cp genome with those of four other Tamaricaceae species, a number of divergence hotspots were identified among these plastomes. Together with the SSRs and long repeats identified, these divergence hotspots could be developed as potential molecular markers facilitating species discrimination and evolutionary studies. Using plastome sequences, we re-investigated the phylogenetic relationship among 19 species, and T. ramosissima was found to be a sister of Tamarix chinensis.Conclusions: Taken together, our study provides valuable genomic resources to deepen the understanding of the plant photosynthetic mechanism and phylogenomics.


Author(s):  
Furrukh Mehmood ◽  
Abdullah ◽  
Zartasha Ubaid ◽  
Iram Shahzadi ◽  
Ibrar Ahmed ◽  
...  

AbstractThe genus Nicotiana of the family Solanaceae, commonly referred to as tobacco plants, are a group cultivated as garden ornamentals. Besides their use in the worldwide production of tobacco leaves, they are also used as evolutionary model systems due to their complex development history, which is tangled by polyploidy and hybridization. Here, we assembled the plastid genomes of five tobacco species, namely N. knightiana, N. rustica, N. paniculata, N. obtusifolia and N. glauca. De novo assembled tobacco plastid genomes showed typical quadripartite structure, consisting of a pair of inverted repeats (IR) regions (25,323–25,369 bp each) separated by a large single copy (LSC) region (86,510 –86,716 bp) and a small single copy (SSC) region (18,441–18,555 bp). Comparative analyses of Nicotiana plastid genomes showed similar GC content, gene content, codon usage, simple sequence repeats, oligonucleotide repeats, RNA editing sites and substitutions with currently available Solanaceae genomes sequences. We identified twenty highly polymorphic regions mostly belonging to intergenic spacer regions (IGS), which could be appropriate for the development of robust and cost-effective markers to infer the phylogeny of genus Nicotiana and family Solanaceae. Our comparative plastid genome analysis revealed that the maternal parent of the tetraploid N. rustica was the common ancestor of N. paniculata and N. knightiana, and the later species is more closely related to N. rustica. The relaxed molecular clock analyses estimated that the speciation event between N. rustica and knightiana appeared 0.56 Ma (HPD 0.65–0.46). The biogeographical analysis showed a south-to-north range expansion and diversification for N. rustica and related species, where N. undulata and N. paniculata evolved in North/Central Peru, while N. rustica developed in Southern Peru and separated from N. knightiana, which adapted to the Southern coastal climatic regimes. We further inspected selective pressure on protein-coding genes among tobacco species to determine if this adaptation process affected the evolution of plastid genes. These analyses indicated that four genes involved in different plastid functions, such as DNA replication (rpoA) and photosynthesis (atpB, ndhD and ndhF), came under positive selective pressure as a result of specific environmental conditions. Genetic mutations of the following genes might have contributed to the survival and better adaptation during the evolutionary history of tobacco species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yan-Yan Guo ◽  
Jia-Xing Yang ◽  
Hong-Kun Li ◽  
Hu-Sheng Zhao

The size of the chloroplast genome (plastome) of autotrophic angiosperms is generally conserved. However, the chloroplast genomes of some lineages are greatly expanded, which may render assembling these genomes from short read sequencing data more challenging. Here, we present the sequencing, assembly, and annotation of the chloroplast genomes of Cypripedium tibeticum and Cypripedium subtropicum. We de novo assembled the chloroplast genomes of the two species with a combination of short-read Illumina data and long-read PacBio data. The plastomes of the two species are characterized by expanded genome size, proliferated AT-rich repeat sequences, low GC content and gene density, as well as low substitution rates of the coding genes. The plastomes of C. tibeticum (197,815 bp) and C. subtropicum (212,668 bp) are substantially larger than those of the three species sequenced in previous studies. The plastome of C. subtropicum is the longest one of Orchidaceae to date. Despite the increase in genome size, the gene order and gene number of the plastomes are conserved, with the exception of an ∼75 kb large inversion in the large single copy (LSC) region shared by the two species. The most striking is the record-setting low GC content in C. subtropicum (28.2%). Moreover, the plastome expansion of the two species is strongly correlated with the proliferation of AT-biased non-coding regions: the non-coding content of C. subtropicum is in excess of 57%. The genus provides a typical example of plastome expansion induced by the expansion of non-coding regions. Considering the pros and cons of different sequencing technologies, we recommend hybrid assembly based on long and short reads applied to the sequencing of plastomes with AT-biased base composition.


2021 ◽  
Vol 14 (3) ◽  
pp. 203 ◽  
Author(s):  
Shurong Hou ◽  
Juan Diez ◽  
Chao Wang ◽  
Christoph Becker-Pauly ◽  
Gregg B. Fields ◽  
...  

Meprin α and β are zinc-dependent proteinases implicated in multiple diseases including cancers, fibrosis, and Alzheimer’s. However, until recently, only a few inhibitors of either meprin were reported and no inhibitors are in preclinical development. Moreover, inhibitors of other metzincins developed in previous years are not effective in inhibiting meprins suggesting the need for de novo discovery effort. To address the paucity of tractable meprin inhibitors we developed ultrahigh-throughput assays and conducted parallel screening of >650,000 compounds against each meprin. As a result of this effort, we identified five selective meprin α hits belonging to three different chemotypes (triazole-hydroxyacetamides, sulfonamide-hydroxypropanamides, and phenoxy-hydroxyacetamides). These hits demonstrated a nanomolar to micromolar inhibitory activity against meprin α with low cytotoxicity and >30-fold selectivity against meprin β and other related metzincincs. These selective inhibitors of meprin α provide a good starting point for further optimization.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Christopher Quince ◽  
Sergey Nurk ◽  
Sebastien Raguideau ◽  
Robert James ◽  
Orkun S. Soyer ◽  
...  

AbstractWe introduce STrain Resolution ON assembly Graphs (STRONG), which identifies strains de novo, from multiple metagenome samples. STRONG performs coassembly, and binning into metagenome assembled genomes (MAGs), and stores the coassembly graph prior to variant simplification. This enables the subgraphs and their unitig per-sample coverages, for individual single-copy core genes (SCGs) in each MAG, to be extracted. A Bayesian algorithm, BayesPaths, determines the number of strains present, their haplotypes or sequences on the SCGs, and abundances. STRONG is validated using synthetic communities and for a real anaerobic digestor time series generates haplotypes that match those observed from long Nanopore reads.


2021 ◽  
Vol 22 (13) ◽  
pp. 7236
Author(s):  
Endah Dwi Hartuti ◽  
Takaya Sakura ◽  
Mohammed S. O. Tagod ◽  
Eri Yoshida ◽  
Xinying Wang ◽  
...  

Plasmodium falciparum’s resistance to available antimalarial drugs highlights the need for the development of novel drugs. Pyrimidine de novo biosynthesis is a validated drug target for the prevention and treatment of malaria infection. P. falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the oxidation of dihydroorotate to orotate and utilize ubiquinone as an electron acceptor in the fourth step of pyrimidine de novo biosynthesis. PfDHODH is targeted by the inhibitor DSM265, which binds to a hydrophobic pocket located at the N-terminus where ubiquinone binds, which is known to be structurally divergent from the mammalian orthologue. In this study, we screened 40,400 compounds from the Kyoto University chemical library against recombinant PfDHODH. These studies led to the identification of 3,4-dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine and its derivatives as a new class of PfDHODH inhibitor. Moreover, the hit compounds identified in this study are selective for PfDHODH without inhibition of the human enzymes. Finally, this new scaffold of PfDHODH inhibitors showed growth inhibition activity against P. falciparum 3D7 with low toxicity to three human cell lines, providing a new starting point for antimalarial drug development.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1078 ◽  
Author(s):  
Albert Ros-Lucas ◽  
Florencia Correa-Fiz ◽  
Laia Bosch-Camós ◽  
Fernando Rodriguez ◽  
Julio Alonso-Padilla

African swine fever virus is the etiological agent of African swine fever, a transmissible severe hemorrhagic disease that affects pigs, causing massive economic losses. There is neither a treatment nor a vaccine available, and the only method to control its spread is by extensive culling of pigs. So far, classical vaccine development approaches have not yielded sufficiently good results in terms of concomitant safety and efficacy. Nowadays, thanks to advances in genomic and proteomic techniques, a reverse vaccinology strategy can be explored to design alternative vaccine formulations. In this study, ASFV protein sequences were analyzed using an in-house pipeline based on publicly available immunoinformatic tools to identify epitopes of interest for a prospective vaccine ensemble. These included experimentally validated sequences from the Immune Epitope Database, as well as de novo predicted sequences. Experimentally validated and predicted epitopes were prioritized following a series of criteria that included evolutionary conservation, presence in the virulent and currently circulating variant Georgia 2007/1, and lack of identity to either the pig proteome or putative proteins from pig gut microbiota. Following this strategy, 29 B-cell, 14 CD4+ T-cell and 6 CD8+ T-cell epitopes were selected, which represent a starting point to investigating the protective capacity of ASFV epitope-based vaccines.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Momchilo Vuyisich ◽  
Ayesha Arefin ◽  
Karen Davenport ◽  
Shihai Feng ◽  
Cheryl Gleasner ◽  
...  

Sequencing bacterial genomes has traditionally required large amounts of genomic DNA (~1 μg). There have been few studies to determine the effects of the input DNA amount or library preparation method on the quality of sequencing data. Several new commercially available library preparation methods enable shotgun sequencing from as little as 1 ng of input DNA. In this study, we evaluated the NEBNext Ultra library preparation reagents for sequencing bacterial genomes. We have evaluated the utility of NEBNext Ultra for resequencing andde novoassembly of four bacterial genomes and compared its performance with the TruSeq library preparation kit. The NEBNext Ultra reagents enable high quality resequencing andde novoassembly of a variety of bacterial genomes when using 100 ng of input genomic DNA. For the two most challenging genomes (Burkholderiaspp.), which have the highest GC content and are the longest, we also show that the quality of both resequencing andde novoassembly is not decreased when only 10 ng of input genomic DNA is used.


Sign in / Sign up

Export Citation Format

Share Document