scholarly journals Image and structured data analysis for prognostication of health outcomes in patients presenting to the Emergency Department during the COVID-19 pandemic

Author(s):  
Liam Butler ◽  
Ibrahim Karabayir ◽  
Mohammad Samie Tootooni ◽  
Majid Afshar ◽  
Ari Goldberg ◽  
...  

Background: Patients admitted to the emergency department (ED) with COVID-19 symptoms are routinely required to have chest radiographs and computed tomography (CT) scans. COVID-19 infection has been directly related to development of acute respiratory distress syndrome (ARDS) and severe infections lead to admission to intensive care and can also lead to death. The use of clinical data in machine learning models available at time of admission to ED can be used to assess possible risk of ARDS, need for intensive care unit (ICU) admission as well as risk of mortality. In addition, chest radiographs can be inputted into a deep learning model to further assess these risks. Purpose: This research aimed to develop machine and deep learning models using both structured clinical data and image data from the electronic health record (EHR) to adverse outcomes following ED admission. Materials and Methods: Light Gradient Boosting Machines (LightGBM) was used as the main machine learning algorithm using all clinical data including 42 variables. Compact models were also developed using 15 the most important variables to increase applicability of the models in clinical settings. To predict risk of the aforementioned health outcome events, transfer learning from the CheXNet model was implemented on our data as well. This research utilized clinical data and chest radiographs of 3571 patients 18 years and older admitted to the emergency department between 9th March 2020 and 29th October 2020 at Loyola University Medical Center. Main Findings: Our research results show that we can detect COVID-19 infection (AUC = 0.790 (0.746-0.835)) and predict the risk of developing ARDS (AUC = 0.781 (0.690-0.872), ICU admission (AUC = 0.675 (0.620-0.713)), and mortality (AUC = 0.759 (0.678-0.840)) at moderate accuracy from both chest X-ray images and clinical data. Principal Conclusions: The results can help in clinical decision making, especially when addressing ARDS and mortality, during the assessment of patients admitted to the ED with or without COVID-19 symptoms.

2020 ◽  
Vol 9 (3) ◽  
pp. 875
Author(s):  
Young Suk Kwon ◽  
Moon Seong Baek

The quick sepsis-related organ failure assessment (qSOFA) score has been introduced to predict the likelihood of organ dysfunction in patients with suspected infection. We hypothesized that machine-learning models using qSOFA variables for predicting three-day mortality would provide better accuracy than the qSOFA score in the emergency department (ED). Between January 2016 and December 2018, the medical records of patients aged over 18 years with suspected infection were retrospectively obtained from four EDs in Korea. Data from three hospitals (n = 19,353) were used as training-validation datasets and data from one (n = 4234) as the test dataset. Machine-learning algorithms including extreme gradient boosting, light gradient boosting machine, and random forest were used. We assessed the prediction ability of machine-learning models using the area under the receiver operating characteristic (AUROC) curve, and DeLong’s test was used to compare AUROCs between the qSOFA scores and qSOFA-based machine-learning models. A total of 447,926 patients visited EDs during the study period. We analyzed 23,587 patients with suspected infection who were admitted to the EDs. The median age of the patients was 63 years (interquartile range: 43–78 years) and in-hospital mortality was 4.0% (n = 941). For predicting three-day mortality among patients with suspected infection in the ED, the AUROC of the qSOFA-based machine-learning model (0.86 [95% CI 0.85–0.87]) for three -day mortality was higher than that of the qSOFA scores (0.78 [95% CI 0.77–0.79], p < 0.001). For predicting three-day mortality in patients with suspected infection in the ED, the qSOFA-based machine-learning model was found to be superior to the conventional qSOFA scores.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 809
Author(s):  
Liyang Wang ◽  
Dantong Niu ◽  
Xinjie Zhao ◽  
Xiaoya Wang ◽  
Mengzhen Hao ◽  
...  

Traditional food allergen identification mainly relies on in vivo and in vitro experiments, which often needs a long period and high cost. The artificial intelligence (AI)-driven rapid food allergen identification method has solved the above mentioned some drawbacks and is becoming an efficient auxiliary tool. Aiming to overcome the limitations of lower accuracy of traditional machine learning models in predicting the allergenicity of food proteins, this work proposed to introduce deep learning model—transformer with self-attention mechanism, ensemble learning models (representative as Light Gradient Boosting Machine (LightGBM) eXtreme Gradient Boosting (XGBoost)) to solve the problem. In order to highlight the superiority of the proposed novel method, the study also selected various commonly used machine learning models as the baseline classifiers. The results of 5-fold cross-validation showed that the area under the receiver operating characteristic curve (AUC) of the deep model was the highest (0.9578), which was better than the ensemble learning and baseline algorithms. But the deep model need to be pre-trained, and the training time is the longest. By comparing the characteristics of the transformer model and boosting models, it can be analyzed that, each model has its own advantage, which provides novel clues and inspiration for the rapid prediction of food allergens in the future.


2020 ◽  
Author(s):  
Patrick Schwab ◽  
August DuMont Schütte ◽  
Benedikt Dietz ◽  
Stefan Bauer

BACKGROUND COVID-19 is a rapidly emerging respiratory disease caused by SARS-CoV-2. Due to the rapid human-to-human transmission of SARS-CoV-2, many health care systems are at risk of exceeding their health care capacities, in particular in terms of SARS-CoV-2 tests, hospital and intensive care unit (ICU) beds, and mechanical ventilators. Predictive algorithms could potentially ease the strain on health care systems by identifying those who are most likely to receive a positive SARS-CoV-2 test, be hospitalized, or admitted to the ICU. OBJECTIVE The aim of this study is to develop, study, and evaluate clinical predictive models that estimate, using machine learning and based on routinely collected clinical data, which patients are likely to receive a positive SARS-CoV-2 test or require hospitalization or intensive care. METHODS Using a systematic approach to model development and optimization, we trained and compared various types of machine learning models, including logistic regression, neural networks, support vector machines, random forests, and gradient boosting. To evaluate the developed models, we performed a retrospective evaluation on demographic, clinical, and blood analysis data from a cohort of 5644 patients. In addition, we determined which clinical features were predictive to what degree for each of the aforementioned clinical tasks using causal explanations. RESULTS Our experimental results indicate that our predictive models identified patients that test positive for SARS-CoV-2 a priori at a sensitivity of 75% (95% CI 67%-81%) and a specificity of 49% (95% CI 46%-51%), patients who are SARS-CoV-2 positive that require hospitalization with 0.92 area under the receiver operator characteristic curve (AUC; 95% CI 0.81-0.98), and patients who are SARS-CoV-2 positive that require critical care with 0.98 AUC (95% CI 0.95-1.00). CONCLUSIONS Our results indicate that predictive models trained on routinely collected clinical data could be used to predict clinical pathways for COVID-19 and, therefore, help inform care and prioritize resources.


Attackers take advantage of every second that the anti- vendor delays identifying the attacking malware signature and to provide notifications. In addition, the longer the detection period delayed, the greater the damage to the host device. To put it another way, the lack of ability to detect attacks early complicates the problem and rises serious harm. Consequently, this research intends to develop a knowledgeable anti-malware system capable of immediately detecting and terminating malware actions, rather than waiting for anti-malware updates. The research concentrates in its scope on the detection of malware on the Internet of Things (IoT), based on Machine Learning (ML) techniques. A latest open source ML algorithm called the Light Gradient Boosting Algorithm (LightGBM) has been used to develop our instant host and network layer antimalware approach without any human intervention. For examination reasons, the suggested approach serves the LightGBM machine learning algorithm to adopt datasets obtained from real IoT devices using the LightGBM machine learning algorithm. The results indicate a successful method to detecting and classifying high accuracy malware at both network and host levels based on the Holdout method of cross-validation. Additionally, this result is better than many prior related studies which used different algorithms of Machine Learning and Deep Learning. Though, an old study which used the same dataset was the best among the literature. However, it still slightly less than what this study achieved, besides the complexity which deep learning adds. Lastly, the results show the ability of the proposed approach to detect IoT botnet attacks fast, which is a vital feature to end botnet activity before spreading to any new network device.


10.2196/21439 ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. e21439 ◽  
Author(s):  
Patrick Schwab ◽  
August DuMont Schütte ◽  
Benedikt Dietz ◽  
Stefan Bauer

Background COVID-19 is a rapidly emerging respiratory disease caused by SARS-CoV-2. Due to the rapid human-to-human transmission of SARS-CoV-2, many health care systems are at risk of exceeding their health care capacities, in particular in terms of SARS-CoV-2 tests, hospital and intensive care unit (ICU) beds, and mechanical ventilators. Predictive algorithms could potentially ease the strain on health care systems by identifying those who are most likely to receive a positive SARS-CoV-2 test, be hospitalized, or admitted to the ICU. Objective The aim of this study is to develop, study, and evaluate clinical predictive models that estimate, using machine learning and based on routinely collected clinical data, which patients are likely to receive a positive SARS-CoV-2 test or require hospitalization or intensive care. Methods Using a systematic approach to model development and optimization, we trained and compared various types of machine learning models, including logistic regression, neural networks, support vector machines, random forests, and gradient boosting. To evaluate the developed models, we performed a retrospective evaluation on demographic, clinical, and blood analysis data from a cohort of 5644 patients. In addition, we determined which clinical features were predictive to what degree for each of the aforementioned clinical tasks using causal explanations. Results Our experimental results indicate that our predictive models identified patients that test positive for SARS-CoV-2 a priori at a sensitivity of 75% (95% CI 67%-81%) and a specificity of 49% (95% CI 46%-51%), patients who are SARS-CoV-2 positive that require hospitalization with 0.92 area under the receiver operator characteristic curve (AUC; 95% CI 0.81-0.98), and patients who are SARS-CoV-2 positive that require critical care with 0.98 AUC (95% CI 0.95-1.00). Conclusions Our results indicate that predictive models trained on routinely collected clinical data could be used to predict clinical pathways for COVID-19 and, therefore, help inform care and prioritize resources.


CJEM ◽  
2020 ◽  
Vol 22 (S1) ◽  
pp. S18-S19
Author(s):  
L. Grant ◽  
X. Xue ◽  
Z. Vajihi ◽  
A. Azuelos ◽  
S. Rosenthal ◽  
...  

Introduction: Emergency department (ED) crowding is a major problem across Canada. We studied the ability of artificial intelligence methods to improve patient flow through the ED by predicting patient disposition using information available at triage and shortly after patients’ arrival in the ED. Methods: This retrospective study included all visits to an urban, academic, adult ED between May 2012 and June 2019. For each visit, 489 variables were extracted including triage data that had been collected for use in the Canadian Triage Assessment Scale (CTAS) and information regarding laboratory tests, radiological tests, consultations and admissions. A training set consisting of all visits from April 2012 up to December 2018 was used to train 5 classes of machine learning models to predict admission to the hospital from the ED. The models were trained to predict admission at the time of the patient's arrival in the ED and every 30 minutes after arrival until 6 hours into their ED stay. The performance of models was compared using the area under the ROC curve (AUC) on a test set consisting of all visits from January 2019 to June 2019. Results: The study included 536,332 visits and the admission rate was 15.0%. Gradient boosting models generally outperformed other machine learning models. A gradient boosting model using all available data at 2 hours after patient arrival in the ED yielded a test set AUC 0.92 [95% CI 0.91-0.93], while a model using only data available at triage yielded an AUC 0.90 [95% CI 0.89-0.91]. The quality of predictions generally improved as predictions were made later in the patient's ED stay leading to an AUC 0.95 [95% CI 0.93-0.96] at 6 hours after arrival. A gradient boosting model with 20 variables available at 2 hours after patient arrival in the ED yielded an AUC 0.91 [95% CI 0.89-0.93]. A gradient boosting model that makes predictions at 2 hours after arrival in ED using only variables that are available at all EDs in the province of Quebec yielded an AUC 0.91 [95% 0.89-0.92]. Conclusion: Machine learning can predict admission to a hospital from the ED using variables that area collected as part of routine ED care. Machine learning tools may potentially be used to help ED physicians to make faster and more appropriate disposition decisions, to decrease unnecessary testing and alleviate ED crowding.


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-20
Author(s):  
Nihad Brahimi ◽  
Huaping Zhang ◽  
Lin Dai ◽  
Jianzi Zhang

The car-sharing system is a popular rental model for cars in shared use. It has become particularly attractive due to its flexibility; that is, the car can be rented and returned anywhere within one of the authorized parking slots. The main objective of this research work is to predict the car usage in parking stations and to investigate the factors that help to improve the prediction. Thus, new strategies can be designed to make more cars on the road and fewer in the parking stations. To achieve that, various machine learning models, namely vector autoregression (VAR), support vector regression (SVR), eXtreme gradient boosting (XGBoost), k-nearest neighbors (kNN), and deep learning models specifically long short-time memory (LSTM), gated recurrent unit (GRU), convolutional neural network (CNN), CNN-LSTM, and multilayer perceptron (MLP), were performed on different kinds of features. These features include the past usage levels, Chongqing’s environmental conditions, and temporal information. After comparing the obtained results using different metrics, we found that CNN-LSTM outperformed other methods to predict the future car usage. Meanwhile, the model using all the different feature categories results in the most precise prediction than any of the models using one feature category at a time


2021 ◽  
Author(s):  
Liyang Wang ◽  
Dantong Niu ◽  
Xinjie Zhao ◽  
Xiaoya Wang ◽  
Mengzhen Hao ◽  
...  

AbstractTraditional food allergen identification mainly relies on in vivo and in vitro experiments, which often needs a long period and high cost. The artificial intelligence (AI)-driven rapid food allergen identification method has solved the two drawbacks and is becoming an efficient auxiliary tool. Aiming to overcome the limitations of lower accuracy of traditional machine learning models in predicting the allergenicity of food allergens, this work proposed to introduce transformer deep learning model with self-attention mechanism and ensemble learning model (representative as Light Gradient Boosting Machine (LightGBM) and eXtreme Gradient Boosting (XGBoost)) to solve the problem. In order to highlight the superiority of the proposed novel method, the study also selected various commonly used machine learning models as the baseline classifiers. The results of 5-fold cross-validation found that the AUC of the deep model was the highest (0.9400), which was better than the ensemble learning and baseline algorithms. But it needed to be pre-trained, and the training cost was highest. By comparing the characteristics of transformer model and boosting models, it can be analyzed that the two types of models have their own advantages, which provides novel clues and inspiration for the rapid prediction of food allergens in the future.


Author(s):  
Sulaiman S Somani ◽  
Hossein Honarvar ◽  
Sukrit Narula ◽  
Isotta Landi ◽  
Shawn Lee ◽  
...  

Abstract Aims Clinical scoring systems for pulmonary embolism (PE) screening have low specificity and contribute to CT pulmonary angiogram (CTPA) overuse. We assessed whether deep learning models using an existing and routinely collected data modality, electrocardiogram (ECG) waveforms, can increase specificity for PE detection. Methods and Results We create a retrospective cohort of 21,183 patients at moderate- to high-suspicion of PE and associate 23,793 CTPAs (10.0% PE-positive) with 320,746 ECGs and encounter-level clinical data (demographics, comorbidities, vital signs, and labs). We develop three machine learning models to predict PE likelihood: an ECG model using only ECG waveform data, an EHR model using tabular clinical data, and a Fusion model integrating clinical data and an embedded representation of the ECG waveform. We find that a Fusion model (area under receiver-operating characteristic [AUROC] 0.81 ± 0.01) outperforms both the ECG model (AUROC 0.59 ± 0.01) and EHR model (AUROC 0.65 ± 0.01). On a sample of 100 patients from the test set, the Fusion model also achieves greater specificity (0.18) and performance (AUROC 0.84 ± 0.01) than four commonly evaluated clinical scores: Wells' Criteria, Revised Geneva Score, Pulmonary Embolism Rule-Out Criteria, and 4-Level Pulmonary Embolism Clinical Probability Score (AUROC 0.50-0.58, specificity 0.00-0.05). The model is superior to these scores on feature sensitivity analyses (AUROC 0.66 to 0.84) and achieves comparable performance across sex (AUROC 0.81) and racial/ethnic (AUROC 0.77 to 0.84) subgroups. Conclusion Synergistic deep learning of electrocardiogram waveforms with traditional clinical variables can increase the specificity of PE detection in patients at least at moderate suspicion for PE.


Sign in / Sign up

Export Citation Format

Share Document