scholarly journals Modelling on Car-Sharing Serial Prediction Based on Machine Learning and Deep Learning

Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-20
Author(s):  
Nihad Brahimi ◽  
Huaping Zhang ◽  
Lin Dai ◽  
Jianzi Zhang

The car-sharing system is a popular rental model for cars in shared use. It has become particularly attractive due to its flexibility; that is, the car can be rented and returned anywhere within one of the authorized parking slots. The main objective of this research work is to predict the car usage in parking stations and to investigate the factors that help to improve the prediction. Thus, new strategies can be designed to make more cars on the road and fewer in the parking stations. To achieve that, various machine learning models, namely vector autoregression (VAR), support vector regression (SVR), eXtreme gradient boosting (XGBoost), k-nearest neighbors (kNN), and deep learning models specifically long short-time memory (LSTM), gated recurrent unit (GRU), convolutional neural network (CNN), CNN-LSTM, and multilayer perceptron (MLP), were performed on different kinds of features. These features include the past usage levels, Chongqing’s environmental conditions, and temporal information. After comparing the obtained results using different metrics, we found that CNN-LSTM outperformed other methods to predict the future car usage. Meanwhile, the model using all the different feature categories results in the most precise prediction than any of the models using one feature category at a time

Author(s):  
Andrea Maria N. C. Ribeiro ◽  
Pedro Rafael X. do Carmo ◽  
Patricia Takako Endo ◽  
Pierangelo Rosati ◽  
Theo Lynn

Commercial buildings are a significant consumer of energy worldwide. Logistics facilities, and specifically warehouses, are a common building type yet under-researched in the demand-side energy forecasting literature. Warehouses have an idiosyncratic profile when compared to other commercial and industrial buildings with a significant reliance on a small number of energy systems. As such, warehouse owners and operators are increasingly entering in to energy performance contracts with energy service companies (ESCOs) to minimise environmental impact, reduce costs, and improve competitiveness. ESCOs and warehouse owners and operators require accurate forecasts of their energy consumption so that precautionary and mitigation measures can be taken. This paper explores the performance of three machine learning models (Support Vector Regression (SVR), Random Forest, and Extreme Gradient Boosting (XGBoost)), three deep learning models (Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU)), and a classical time series model, Autoregressive Integrated Moving Average (ARIMA) for predicting daily energy consumption. The dataset comprises 8,040 records generated over an 11-month period from January to November 2020 from a non-refrigerated logistics facility located in Ireland. The grid search method was used to identify the best configurations for each model. The proposed XGBoost models outperform other models for both very short load forecasting (VSTLF) and short term load forecasting (STLF); the ARIMA model performed the worst.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Cheng Qu ◽  
Lin Gao ◽  
Xian-qiang Yu ◽  
Mei Wei ◽  
Guo-quan Fang ◽  
...  

Background. Acute kidney injury (AKI) has long been recognized as a common and important complication of acute pancreatitis (AP). In the study, machine learning (ML) techniques were used to establish predictive models for AKI in AP patients during hospitalization. This is a retrospective review of prospectively collected data of AP patients admitted within one week after the onset of abdominal pain to our department from January 2014 to January 2019. Eighty patients developed AKI after admission (AKI group) and 254 patients did not (non-AKI group) in the hospital. With the provision of additional information such as demographic characteristics or laboratory data, support vector machine (SVM), random forest (RF), classification and regression tree (CART), and extreme gradient boosting (XGBoost) were used to build models of AKI prediction and compared to the predictive performance of the classic model using logistic regression (LR). XGBoost performed best in predicting AKI with an AUC of 91.93% among the machine learning models. The AUC of logistic regression analysis was 87.28%. Present findings suggest that compared to the classical logistic regression model, machine learning models using features that can be easily obtained at admission had a better performance in predicting AKI in the AP patients.


Author(s):  
Nelson Yego ◽  
Juma Kasozi ◽  
Joseph Nkrunziza

The role of insurance in financial inclusion as well as in economic growth is immense. However, low uptake seems to impede the growth of the sector hence the need for a model that robustly predicts uptake of insurance among potential clients. In this research, we compared the performances of eight (8) machine learning models in predicting the uptake of insurance. The classifiers considered were Logistic Regression, Gaussian Naive Bayes, Support Vector Machines, K Nearest Neighbors, Decision Tree, Random Forest, Gradient Boosting Machines and Extreme Gradient boosting. The data used in the classification was from the 2016 Kenya FinAccess Household Survey. Comparison of performance was done for both upsampled and downsampled data due to data imbalance. For upsampled data, Random Forest classifier showed highest accuracy and precision compared to other classifiers but for down sampled data, gradient boosting was optimal. It is noteworthy that for both upsampled and downsampled data, tree-based classifiers were more robust than others in insurance uptake prediction. However, in spite of hyper-parameter optimization, the area under receiver operating characteristic curve remained highest for Random Forest as compared to other tree-based models. Also, the confusion matrix for Random Forest showed least false positives, and highest true positives hence could be construed as the most robust model for predicting the insurance uptake. Finally, the most important feature in predicting uptake was having a bank product hence bancassurance could be said to be a plausible channel of distribution of insurance products.


2021 ◽  
Vol 4 (2(112)) ◽  
pp. 58-72
Author(s):  
Chingiz Kenshimov ◽  
Zholdas Buribayev ◽  
Yedilkhan Amirgaliyev ◽  
Aisulyu Ataniyazova ◽  
Askhat Aitimov

In the course of our research work, the American, Russian and Turkish sign languages were analyzed. The program of recognition of the Kazakh dactylic sign language with the use of machine learning methods is implemented. A dataset of 5000 images was formed for each gesture, gesture recognition algorithms were applied, such as Random Forest, Support Vector Machine, Extreme Gradient Boosting, while two data types were combined into one database, which caused a change in the architecture of the system as a whole. The quality of the algorithms was also evaluated. The research work was carried out due to the fact that scientific work in the field of developing a system for recognizing the Kazakh language of sign dactyls is currently insufficient for a complete representation of the language. There are specific letters in the Kazakh language, because of the peculiarities of the spelling of the language, problems arise when developing recognition systems for the Kazakh sign language. The results of the work showed that the Support Vector Machine and Extreme Gradient Boosting algorithms are superior in real-time performance, but the Random Forest algorithm has high recognition accuracy. As a result, the accuracy of the classification algorithms was 98.86 % for Random Forest, 98.68 % for Support Vector Machine and 98.54 % for Extreme Gradient Boosting. Also, the evaluation of the quality of the work of classical algorithms has high indicators. The practical significance of this work lies in the fact that scientific research in the field of gesture recognition with the updated alphabet of the Kazakh language has not yet been conducted and the results of this work can be used by other researchers to conduct further research related to the recognition of the Kazakh dactyl sign language, as well as by researchers, engaged in the development of the international sign language


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Yu ◽  
Yan Zhou ◽  
Qiong Yang ◽  
Xiaoling Liu ◽  
Lili Huang ◽  
...  

AbstractCarotid atherosclerosis (CAS) is a risk factor for cardiovascular and cerebrovascular events, but duplex ultrasonography isn’t recommended in routine screening for asymptomatic populations according to medical guidelines. We aim to develop machine learning models to screen CAS in asymptomatic adults. A total of 2732 asymptomatic subjects for routine physical examination in our hospital were included in the study. We developed machine learning models to classify subjects with or without CAS using decision tree, random forest (RF), extreme gradient boosting (XGBoost), support vector machine (SVM) and multilayer perceptron (MLP) with 17 candidate features. The performance of models was assessed on the testing dataset. The model using MLP achieved the highest accuracy (0.748), positive predictive value (0.743), F1 score (0.742), area under receiver operating characteristic curve (AUC) (0.766) and Kappa score (0.445) among all classifiers. It’s followed by models using XGBoost and SVM. In conclusion, the model using MLP is the best one to screen CAS in asymptomatic adults based on the results from routine physical examination, followed by using XGBoost and SVM. Those models may provide an effective and applicable method for physician and primary care doctors to screen asymptomatic CAS without risk factors in general population, and improve risk predictions and preventions of cardiovascular and cerebrovascular events in asymptomatic adults.


2021 ◽  
Author(s):  
Íris Viana dos Santos Santana ◽  
Andressa C. M. da Silveira ◽  
Álvaro Sobrinho ◽  
Lenardo Chaves e Silva ◽  
Leandro Dias da Silva ◽  
...  

BACKGROUND controlling the COVID-19 outbreak in Brazil is considered a challenge of continental proportions due to the high population and urban density, weak implementation and maintenance of social distancing strategies, and limited testing capabilities. OBJECTIVE to contribute to addressing such a challenge, we present the implementation and evaluation of supervised Machine Learning (ML) models to assist the COVID-19 detection in Brazil based on early-stage symptoms. METHODS firstly, we conducted data preprocessing and applied the Chi-squared test in a Brazilian dataset, mainly composed of early-stage symptoms, to perform statistical analyses. Afterward, we implemented ML models using the Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), Decision Tree (DT), Gradient Boosting Machine (GBM), and Extreme Gradient Boosting (XGBoost) algorithms. We evaluated the ML models using precision, accuracy score, recall, the area under the curve, and the Friedman and Nemenyi tests. Based on the comparison, we grouped the top five ML models and measured feature importance. RESULTS the MLP model presented the highest mean accuracy score, with more than 97.85%, when compared to GBM (> 97.39%), RF (> 97.36%), DT (> 97.07%), XGBoost (> 97.06%), KNN (> 95.14%), and SVM (> 94.27%). Based on the statistical comparison, we grouped MLP, GBM, DT, RF, and XGBoost, as the top five ML models, because the evaluation results are statistically indistinguishable. The ML models` importance of features used during predictions varies from gender, profession, fever, sore throat, dyspnea, olfactory disorder, cough, runny nose, taste disorder, and headache. CONCLUSIONS supervised ML models effectively assist the decision making in medical diagnosis and public administration (e.g., testing strategies), based on early-stage symptoms that do not require advanced and expensive exams.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1543
Author(s):  
Fernando Mateo ◽  
Andrea Tarazona ◽  
Eva María Mateo

Unifloral honeys are highly demanded by honey consumers, especially in Europe. To ensure that a honey belongs to a very appreciated botanical class, the classical methodology is palynological analysis to identify and count pollen grains. Highly trained personnel are needed to perform this task, which complicates the characterization of honey botanical origins. Organoleptic assessment of honey by expert personnel helps to confirm such classification. In this study, the ability of different machine learning (ML) algorithms to correctly classify seven types of Spanish honeys of single botanical origins (rosemary, citrus, lavender, sunflower, eucalyptus, heather and forest honeydew) was investigated comparatively. The botanical origin of the samples was ascertained by pollen analysis complemented with organoleptic assessment. Physicochemical parameters such as electrical conductivity, pH, water content, carbohydrates and color of unifloral honeys were used to build the dataset. The following ML algorithms were tested: penalized discriminant analysis (PDA), shrinkage discriminant analysis (SDA), high-dimensional discriminant analysis (HDDA), nearest shrunken centroids (PAM), partial least squares (PLS), C5.0 tree, extremely randomized trees (ET), weighted k-nearest neighbors (KKNN), artificial neural networks (ANN), random forest (RF), support vector machine (SVM) with linear and radial kernels and extreme gradient boosting trees (XGBoost). The ML models were optimized by repeated 10-fold cross-validation primarily on the basis of log loss or accuracy metrics, and their performance was compared on a test set in order to select the best predicting model. Built models using PDA produced the best results in terms of overall accuracy on the test set. ANN, ET, RF and XGBoost models also provided good results, while SVM proved to be the worst.


2020 ◽  
Author(s):  
Albert Morera ◽  
Juan Martínez de Aragón ◽  
José Antonio Bonet ◽  
Jingjing Liang ◽  
Sergio de-Miguel

Abstract BackgroundThe prediction of biogeographical patterns from a large number of driving factors with complex interactions, correlations and non-linear dependences require advanced analytical methods and modelling tools. This study compares different statistical and machine learning models for predicting fungal productivity biogeographical patterns as a case study for the thorough assessment of the performance of alternative modelling approaches to provide accurate and ecologically-consistent predictions.MethodsWe evaluated and compared the performance of two statistical modelling techniques, namely, generalized linear mixed models and geographically weighted regression, and four machine learning models, namely, random forest, extreme gradient boosting, support vector machine and deep learning to predict fungal productivity. We used a systematic methodology based on substitution, random, spatial and climatic blocking combined with principal component analysis, together with an evaluation of the ecological consistency of spatially-explicit model predictions.ResultsFungal productivity predictions were sensitive to the modelling approach and complexity. Moreover, the importance assigned to different predictors varied between machine learning modelling approaches. Decision tree-based models increased prediction accuracy by ~7% compared to other machine learning approaches and by more than 25% compared to statistical ones, and resulted in higher ecological consistence at the landscape level.ConclusionsWhereas a large number of predictors are often used in machine learning algorithms, in this study we show that proper variable selection is crucial to create robust models for extrapolation in biophysically differentiated areas. When dealing with spatial-temporal data in the analysis of biogeographical patterns, climatic blocking is postulated as a highly informative technique to be used in cross-validation to assess the prediction error over larger scales. Random forest was the best approach for prediction both in sampling-like environments as well as in extrapolation beyond the spatial and climatic range of the modelling data.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jaehoon Kim ◽  
Jeongkyu Oh ◽  
Tae-Young Heo

Honeybees play a crucial role in the agriculture industry because they pollinate approximately 75% of all flowering crops. However, every year, the number of honeybees continues to decrease. Consequently, numerous researchers in various fields have persistently attempted to solve this problem. Acoustic scene classification, using sounds recorded from beehives, is an approach that can be applied to detect changes inside beehives. This method can be used to determine intervals that threaten a beehive. Currently, studies on sound analysis, using deep learning algorithms integrated with various data preprocessing methods that extract features from sound signals, continue to be conducted. However, there is little insight into how deep learning algorithms recognize audio scenes, as demonstrated by studies on image recognition. Therefore, in this study, we used a mel spectrogram, mel-frequency cepstral coefficients (MFCCs), and a constant-Q transform to compare the performance of conventional machine learning models to that of convolutional neural network (CNN) models. We used the support vector machine, random forest, extreme gradient boosting, shallow CNN, and VGG-13 models. Using gradient-weighted class activation mapping (Grad-CAM), we conducted an analysis to determine how the best-performing CNN model recognized audio scenes. The results showed that the VGG-13 model, using MFCCs as input data, demonstrated the best accuracy (91.93%). Additionally, based on the precision, recall, and F1-score for each class, we established that sounds other than those from bees were effectively recognized. Further, we conducted an analysis to determine the MFCCs that are important for classification through the visualizations obtained by applying Grad-CAM to the VGG-13 model. We believe that our findings can be used to develop a monitoring system that can consistently detect abnormal conditions in beehives early by classifying the sounds inside beehives.


Sign in / Sign up

Export Citation Format

Share Document