scholarly journals Nucleolar stress controls mutant Huntingtin toxicity and monitors Huntington disease progression

2021 ◽  
Author(s):  
Aynur Soenmez ◽  
Rasem Mustafa ◽  
Salome T Ryll ◽  
Francesca Tuorto ◽  
Ludivine Wacheul ◽  
...  

Transcriptional and cellular stress surveillance deficits are hallmarks of Huntington disease (HD), a fatal autosomal dominant neurodegenerative disorder, caused by a pathological expansion of CAG repeats in the Huntingtin (HTT) gene. The nucleolus, a dynamic nuclear biomolecular condensate and the site of ribosomal RNA (rRNA) transcription, is implicated in the cellular stress response and in protein quality control. While the exact pathomechanisms of HD remain unclear, the impact of nucleolar dysfunction on HD pathophysiology in vivo is elusive. Here we identified aberrant maturation of rRNA and decreased translational rate in association with human mutant Huntingtin (mHTT) expression. Genetic disruption of nucleolar integrity in vulnerable striatal neurons of the R6/2 HD mouse model decreases mHTT disperse state in the nucleus, exacerbating the motor deficits. The protein nucleophosmin 1 (NPM1), important for nucleolar integrity and rRNA maturation, loses its nucleolar localization. NPM1 de-localization occurs in the striatum and in the skeletal muscle of the progressive zQ175 knock-in HD mouse model, mimicking the phenotype of HD patients in skeletal muscle biopsies. Taken together, we showed that nucleolar integrity regulates the formation of mHTT inclusions in vivo, and identified NPM1 as a novel, readily detectable peripheral histopathological marker of HD progression.

2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Aynur Sönmez ◽  
Rasem Mustafa ◽  
Salome T. Ryll ◽  
Francesca Tuorto ◽  
Ludivine Wacheul ◽  
...  

AbstractTranscriptional and cellular-stress surveillance deficits are hallmarks of Huntington’s disease (HD), a fatal autosomal-dominant neurodegenerative disorder caused by a pathological expansion of CAG repeats in the Huntingtin (HTT) gene. The nucleolus, a dynamic nuclear biomolecular condensate and the site of ribosomal RNA (rRNA) transcription, is implicated in the cellular stress response and in protein quality control. While the exact pathomechanisms of HD are still unclear, the impact of nucleolar dysfunction on HD pathophysiology in vivo remains elusive. Here we identified aberrant maturation of rRNA and decreased translational rate in association with human mutant Huntingtin (mHTT) expression. The protein nucleophosmin 1 (NPM1), important for nucleolar integrity and rRNA maturation, loses its prominent nucleolar localization. Genetic disruption of nucleolar integrity in vulnerable striatal neurons of the R6/2 HD mouse model decreases the distribution of mHTT in a disperse state in the nucleus, exacerbating motor deficits. We confirmed NPM1 delocalization in the gradually progressing zQ175 knock-in HD mouse model: in the striatum at a presymptomatic stage and in the skeletal muscle at an early symptomatic stage. In Huntington’s patient skeletal muscle biopsies, we found a selective redistribution of NPM1, similar to that in the zQ175 model. Taken together, our study demonstrates that nucleolar integrity regulates the formation of mHTT inclusions in vivo, and identifies NPM1 as a novel, readily detectable peripheral histopathological marker of HD progression.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Alba Di Pardo ◽  
Elena Ciaglia ◽  
Monica Cattaneo ◽  
Anna Maciag ◽  
Francesco Montella ◽  
...  

Abstract The longevity-associated variant (LAV) of the bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) has been found significantly enriched in long-living individuals. Neuroinflammation is a key player in Huntington’s disease (HD), a neurodegenerative disorder caused by neural death due to expanded CAG repeats encoding a long polyglutamine tract in the huntingtin protein (Htt). Herein, we showed that striatal-derived cell lines with expanded Htt (STHdh Q111/111) expressed and secreted lower levels of BPIFB4, when compared with Htt expressing cells (STHdh Q7/7), which correlated with a defective stress response to proteasome inhibition. Overexpression of LAV-BPIFB4 in STHdh Q111/111 cells was able to rescue both the BPIFB4 secretory profile and the proliferative/survival response. According to a well-established immunomodulatory role of LAV-BPIFB4, conditioned media from LAV-BPIFB4-overexpressing STHdh Q111/111 cells were able to educate Immortalized Human Microglia—SV40 microglial cells. While STHdh Q111/111 dying cells were ineffective to induce a CD163 + IL-10high pro-resolving microglia compared to normal STHdh Q7/7, LAV-BPIFB4 transduction promptly restored the central immune control through a mechanism involving the stromal cell-derived factor-1. In line with the in vitro results, adeno-associated viral-mediated administration of LAV-BPIFB4 exerted a CXCR4-dependent neuroprotective action in vivo in the R6/2 HD mouse model by preventing important hallmarks of the disease including motor dysfunction, body weight loss, and mutant huntingtin protein aggregation. In this view, LAV-BPIFB4, due to its pleiotropic ability in both immune compartment and cellular homeostasis, may represent a candidate for developing new treatment for HD.


1999 ◽  
Vol 354 (1386) ◽  
pp. 963-969 ◽  
Author(s):  
Kirupa Sathasivam ◽  
Carl Hobbs ◽  
Laura Mangiarini ◽  
Amarbirpal Mahal ◽  
Mark Turmaine ◽  
...  

Huntington'sdisease (HD) is an inherited neurodegenerative disorder caused by a CAG–polyglutamine repeat expansion. A mouse model of this disease has been generated by the introduction of exon 1 of the human HD gene carrying highly expanded CAG repeats into the mouse germ line (R6 lines). Transgenic mice develop a progressive neurological phenotype with a movement disorder and weight loss similar to that in HD. We have previously identified neuronal inclusions in the brains of these mice that have subsequently been established as the pathological hallmark of polyglutamine disease. Inclusions are present before symptoms, which in turn occur long before any selective neuronal cell death can be identified. We have extended the search for inclusions to skeletal muscle, which, like brain, contains terminally differentiated cells. We have conducted an investigation into the skeletal muscle atrophy that occurs in the R6 lines, (i) to provide possible insights into the muscle bulk loss observed in HD patients, and (ii) to conduct a parallel analysis into the consequence of inclusion formation to that being performed in brain. The identification of inclusions in skeletal muscle might be additionally useful in monitoring the ability of drugs to prevent inclusion formation in vivo .


2018 ◽  
Vol 115 (37) ◽  
pp. E8765-E8774 ◽  
Author(s):  
Florian A. Siebzehnrübl ◽  
Kerstin A. Raber ◽  
Yvonne K. Urbach ◽  
Anja Schulze-Krebs ◽  
Fabio Canneva ◽  
...  

Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene (HTT). Although mutant HTT is expressed during embryonic development and throughout life, clinical HD usually manifests later in adulthood. A number of studies document neurodevelopmental changes associated with mutant HTT, but whether these are reversible under therapy remains unclear. Here, we identify very early behavioral, molecular, and cellular changes in preweaning transgenic HD rats and mice. Reduced ultrasonic vocalization, loss of prepulse inhibition, and increased risk taking are accompanied by disturbances of dopaminergic regulation in vivo, reduced neuronal differentiation capacity in subventricular zone stem/progenitor cells, and impaired neuronal and oligodendrocyte differentiation of mouse embryo-derived neural stem cells in vitro. Interventional treatment of this early phenotype with the histone deacetylase inhibitor (HDACi) LBH589 led to significant improvement in behavioral changes and markers of dopaminergic neurotransmission and complete reversal of aberrant neuronal differentiation in vitro and in vivo. Our data support the notion that neurodevelopmental changes contribute to the prodromal phase of HD and that early, presymptomatic intervention using HDACi may represent a promising novel treatment approach for HD.


2021 ◽  
Vol 22 (6) ◽  
pp. 2941
Author(s):  
Marisa Pereira ◽  
Diana R. Ribeiro ◽  
Miguel M. Pinheiro ◽  
Margarida Ferreira ◽  
Stefanie Kellner ◽  
...  

Transfer RNA (tRNA) molecules contain various post-transcriptional modifications that are crucial for tRNA stability, translation efficiency, and fidelity. Besides their canonical roles in translation, tRNAs also originate tRNA-derived small RNAs (tsRNAs), a class of small non-coding RNAs with regulatory functions ranging from translation regulation to gene expression control and cellular stress response. Recent evidence indicates that tsRNAs are also modified, however, the impact of tRNA epitranscriptome deregulation on tsRNAs generation is only now beginning to be uncovered. The 5-methyluridine (m5U) modification at position 54 of cytosolic tRNAs is one of the most common and conserved tRNA modifications among species. The tRNA methyltransferase TRMT2A catalyzes this modification, but its biological role remains mostly unexplored. Here, we show that TRMT2A knockdown in human cells induces m5U54 tRNA hypomodification and tsRNA formation. More specifically, m5U54 hypomodification is followed by overexpression of the ribonuclease angiogenin (ANG) that cleaves tRNAs near the anticodon, resulting in accumulation of 5′tRNA-derived stress-induced RNAs (5′tiRNAs), namely 5′tiRNA-GlyGCC and 5′tiRNA-GluCTC, among others. Additionally, transcriptomic analysis confirms that down-regulation of TRMT2A and consequently m5U54 hypomodification impacts the cellular stress response and RNA stability, which is often correlated with tiRNA generation. Accordingly, exposure to oxidative stress conditions induces TRMT2A down-regulation and tiRNA formation in mammalian cells. These results establish a link between tRNA hypomethylation and ANG-dependent tsRNAs formation and unravel m5U54 as a tRNA cleavage protective mark.


Author(s):  
Paulo L. Pfitzinger ◽  
Laura Fangmann ◽  
Kun Wang ◽  
Elke Demir ◽  
Engin Gürlevik ◽  
...  

Abstract Background Nerve-cancer interactions are increasingly recognized to be of paramount importance for the emergence and progression of pancreatic cancer (PCa). Here, we investigated the role of indirect cholinergic activation on PCa progression through inhibition of acetylcholinesterase (AChE) via clinically available AChE-inhibitors, i.e. physostigmine and pyridostigmine. Methods We applied immunohistochemistry, immunoblotting, MTT-viability, invasion, flow-cytometric-cell-cycle-assays, phospho-kinase arrays, multiplex ELISA and xenografted mice to assess the impact of AChE inhibition on PCa cell growth and invasiveness, and tumor-associated inflammation. Survival analyses were performed in a novel genetically-induced, surgically-resectable mouse model of PCa under adjuvant treatment with gemcitabine+/−physostigmine/pyridostigmine (n = 30 mice). Human PCa specimens (n = 39) were analyzed for the impact of cancer AChE expression on tumor stage and survival. Results We discovered a strong expression of AChE in cancer cells of human PCa specimens. Inhibition of this cancer-cell-intrinsic AChE via pyridostigmine and physostigmine, or administration of acetylcholine (ACh), diminished PCa cell viability and invasion in vitro and in vivo via suppression of pERK signaling, and reduced tumor-associated macrophage (TAM) infiltration and serum pro-inflammatory cytokine levels. In the novel genetically-induced, surgically-resectable PCa mouse model, adjuvant co-therapy with AChE blockers had no impact on survival. Accordingly, survival of resected PCa patients did not differ based on tumor AChE expression levels. Patients with higher-stage PCa also exhibited loss of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT), in their nerves. Conclusion For future clinical trials of PCa, direct cholinergic stimulation of the muscarinic signaling, rather than indirect activation via AChE blockade, may be a more effective strategy.


2005 ◽  
Vol 14 (24) ◽  
pp. 3823-3835 ◽  
Author(s):  
Jeremy M. Van Raamsdonk ◽  
Zoe Murphy ◽  
Elizabeth J. Slow ◽  
Blair R. Leavitt ◽  
Michael R. Hayden

2011 ◽  
Vol 437 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Christopher G. R. Perry ◽  
Daniel A. Kane ◽  
Chien-Te Lin ◽  
Rachel Kozy ◽  
Brook L. Cathey ◽  
...  

Assessment of mitochondrial ADP-stimulated respiratory kinetics in PmFBs (permeabilized fibre bundles) is increasingly used in clinical diagnostic and basic research settings. However, estimates of the Km for ADP vary considerably (~20–300 μM) and tend to overestimate respiration at rest. Noting that PmFBs spontaneously contract during respiration experiments, we systematically determined the impact of contraction, temperature and oxygenation on ADP-stimulated respiratory kinetics. BLEB (blebbistatin), a myosin II ATPase inhibitor, blocked contraction under all conditions and yielded high Km values for ADP of >~250 and ~80 μM in red and white rat PmFBs respectively. In the absence of BLEB, PmFBs contracted and the Km for ADP decreased ~2–10-fold in a temperature-dependent manner. PmFBs were sensitive to hyperoxia (increased Km) in the absence of BLEB (contracted) at 30 °C but not 37 °C. In PmFBs from humans, contraction elicited high sensitivity to ADP (Km<100 μM), whereas blocking contraction (+BLEB) and including a phosphocreatine/creatine ratio of 2:1 to mimic the resting energetic state yielded a Km for ADP of ~1560 μM, consistent with estimates of in vivo resting respiratory rates of <1% maximum. These results demonstrate that the sensitivity of muscle to ADP varies over a wide range in relation to contractile state and cellular energy charge, providing evidence that enzymatic coupling of energy transfer within skeletal muscle becomes more efficient in the working state.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Dorra Hmida-Ben Brahim ◽  
Marwa Chourabi ◽  
Sana Ben Amor ◽  
Imed Harrabi ◽  
Saoussen Trabelsi ◽  
...  

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder. The causative mutation is an expansion of more than 36 CAG repeats in the first exon of IT15 gene. Many studies have shown that the IT15 interacts with several modifier genes to regulate the age at onset (AO) of HD. Our study aims to investigate the implication of CAG expansion and 9 modifiers in the age at onset variance of 15 HD Tunisian patients and to establish the correlation between these modifiers genes and the AO of this disease. Despite the small number of studied patients, this report consists of the first North African study in Huntington disease patients. Our results approve a specific effect of modifiers genes in each population.


2017 ◽  
Vol 7 (1) ◽  
pp. 136-144
Author(s):  
Catherine R. Miller ◽  
Nobby C. Mambo ◽  
Jianli Dong ◽  
Gerald A. Campbell

Huntington disease (HD) is a neurodegenerative disorder with a worldwide prevalence of four to ten per 100 000. It is characterized by choreiform movements, behavioral/psychiatric disturbances, and eventual cognitive decline. Symptoms usually present between 30 and 50 years of age and the diagnosis is based on the combination of clinical symptoms, family history, and genetic testing. A variation of HD, juvenile Huntington disease (JHD), presents earlier, with more severe symptoms and with a worse prognosis. Symptoms are different in JHD, with personality changes and learning difficulties being the predominant presenting features. Seizures are common in JHD, and chorea is uncommon; movement disorders at presentation of JHD are predominantly nonchoreiform. The inheritance pattern for both HD and JHD is autosomal dominant and the disease is caused by an elongation of the CAG repeat in the huntingtin gene. There are many published case reports of Huntington disease that were confirmed at autopsy, but to our knowledge, there are no reports in the literature where the diagnosis of Huntington disease was first made at autopsy. We present a case of a 28-year-old African-American male who was in a state of neglect due to a lifetime of abuse, cognitive difficulties, and seizures, whose cause of death was pneumonia. The gross autopsy findings included bilateral caudate nucleus atrophy and lateral ventricular dilation. Microscopically, severe bilateral neuronal loss and gliosis of the caudate and putamen nuclei were seen. Genetic testing for the number of CAG repeats confirmed the diagnosis and was consistent with JHD.


Sign in / Sign up

Export Citation Format

Share Document