scholarly journals ANALYSIS OF FOUR DIFFERENT TRANSPORT AND PRESERVATION MEDIUM KITS FOR SARS-COV-2 DIAGNOSIS FROM NASOPHARYNGEAL SWAB BY REAL-TIME PCR: ADAPTING TO THE CONSTANTLY INCREASING DEMAND OF SAMPLING PROCESSING AND STOCK-OUTS DURING THE PANDEMIC

Author(s):  
Carlos Barrera-Avalos ◽  
Roberto Luraschi ◽  
Eva Vallejos-Vidal ◽  
Maximiliano Figueroa ◽  
Esteban Arenillas ◽  
...  

The high demand for supplies during the COVID19-pandemic has generated several stock-out of material and essential reagents needed to meet the current high demand for diagnosis in the worldwide population. In this way, there is limited information regarding the performance of different virus transport medium (VTM) for nasopharyngeal swab sampling (NPS) aimed for SARS-CoV-2 detection. We compared the RT-qPCR amplification profile of four different commercial transport medium kits, including DNA/RNA Shield, NAT, VTM, and Phosphate-buffered saline (PBS) transport medium, for NPSs samples from Central Metropolitan Health Service, Santiago, Chile. The RT-qPCR showed a slight lower RNase P Cq value of the samples preserved and transported in DNA/RNA Shield compared to NAT medium. By contrast, a marked increase in the RNase P Cq value was registered in the samples transported with VTM compared to DNA/RNA Shield medium. For PBS-preserved NPS, the performance of two strategies were assessed due to the potential presence of any remaining active virus in the sample: (1) thermal inactivation; and (2) thermal inactivation treatment followed by RNA extraction. The heat inactivation showed a significantly lower Cq value for RNase P and viral ORF1ab Cq compared to the followed by RNA extraction. This study indicates that new medium alternatives could be used if supplies run out to diagnose COVID19

2020 ◽  
Author(s):  
Michela Deiana ◽  
Antonio Mori ◽  
Chiara Piubelli ◽  
Salvatore Scarso ◽  
Mose Favarato ◽  
...  

Abstract Droplet digital PCR (ddPCR) is a sensitive and reproducible technology widely used for quantitation of several different viruses. The aim of this study was to compare the 2019-nCoV CDC ddPCR Triplex Probe Assay (BioRad) performance on the direct quantitation of SARS-CoV-2 on nasopharyngeal swab respect to the procedure applied to the extracted RNA. Moreover, the two widely used swab types were compared (UTM 3mL and ESwab 1mL, COPAN). A total of 50 nasopharyngeal swabs (n=25 UTM 3mL and n=25 ESwab 1mL) from SARS-CoV-2 patients collected during the pandemic from IRCCS Sacro Cuore Don Calabria Hospital (Veneto Region, North-East Italy) were used for our purpose. After heat inactivation, an aliquot of swab medium was used in order to perform the direct quantitation. Then, we compared the direct method with the quantitation performed on the RNA purified from nasopharyngeal swab by automated extraction. We observed that the direct approach achieved generally equal RNA copies compared to the RNA extracted. The results with the direct quantitation were more accurate on ESwab with a sensitivity of 93.33% [95% CI, 68.05 to 99.83] and specificity of 100.00% for both N1 and N2. On the other hand, on UTM we observed a higher rate of discordant results for N1 and N2. The human internal amplification control (RPP30) showed 100% of both sensitivity and specificity independent of swabs and approaches.In conclusion, we described a simple and fast approach for the quantitation of SARS-CoV-2 in nasopharyngeal swab. Our approach resulted in an efficient quantitation, without automated RNA extraction and purification. However, special care needs to be taken on the potential bias due to the conservation of samples as we used thawed material and to the heating treatment. Further studies on a larger cohort of samples are warranted to evaluate the clinical value of this direct approach.


2021 ◽  
Author(s):  
Oona Delpuech ◽  
Julie Douthwaite ◽  
Thomas Hill ◽  
Dhevahi Niranjan ◽  
Nancy Malintan ◽  
...  

Abstract We report the development of a large scale process for heat inactivation of clinical COVID-19 samples prior to laboratory processing for detection of SARS-CoV-2 by RT-qPCR. With more than 120 million confirmed cases, over 3.8 million deaths already recorded at the time of writing, COVID-19 continues to spread in many parts of the world. Consequently, mass testing for SARS-CoV-2 will remain at the forefront of the COVID-19 response and prevention for the near future. Due to biosafety considerations the standard testing process requires a significant amount of manual handling of patient samples within calibrated microbiological safety cabinets. This makes the process expensive, effects operator ergonomics and restricts testing to higher containment level laboratories. We have successfully modified the process by using industrial catering ovens for bulk heat inactivation of oropharyngeal/nasopharyngeal swab samples within their secondary containment packaging before processing in the lab to enable all subsequent activities to be performed in the open laboratory. As part of a validation process, we tested greater than 1200 clinical COVID-19 samples and showed less than 1 Cq loss in RT-qPCR test sensitivity. We also demonstrate the bulk heat inactivation protocol inactivates a murine surrogate of human SARS-CoV-2. Using bulk heat inactivation, the assay is no longer reliant on containment level 2 facilities and practices, which reduces cost, improves operator safety and ergonomics and makes the process scalable. In addition, heating as the sole method of virus inactivation is ideally suited to streamlined and more rapid workflows such as ‘direct to PCR’ assays that do not involve RNA extraction or chemical neutralisation methods.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247792
Author(s):  
Valeria Genoud ◽  
Martin Stortz ◽  
Ariel Waisman ◽  
Bruno G. Berardino ◽  
Paula Verneri ◽  
...  

Real-time reverse transcription PCR (RT-qPCR) is the gold-standard technique for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection in nasopharyngeal swabs specimens. The analysis by RT-qPCR usually requires a previous extraction step to obtain the purified viral RNA. Unfortunately, RNA extraction constitutes a bottleneck for early detection in many countries since it is expensive, time-consuming and depends on the availability of commercial kits. Here, we describe an extraction-free protocol for SARS-CoV-2 detection by RT-qPCR from nasopharyngeal swab clinical samples in saline solution. The method includes a treatment with proteinase K followed by heat inactivation (PK+HID method). We demonstrate that PK+HID improves the RT-qPCR performance in comparison to the heat-inactivation procedure. Moreover, we show that this extraction-free protocol can be combined with a variety of multiplexing RT-qPCR kits. The method combined with a multiplexing detection kit targeting N and ORF1ab viral genes showed a sensitivity of 0.99 and a specificity of 0.99 from the analysis of 106 positive and 106 negative clinical samples. In conclusion, PK+HID is a robust, fast and inexpensive procedure for extraction-free RT-qPCR determinations of SARS-CoV-2. The National Administration of Drugs, Foods and Medical Devices of Argentina has recently authorized the use of this method.


Author(s):  
Guang Fan ◽  
Xuan Qin ◽  
Daniel N. Streblow ◽  
Cristina Magallanes Hoyos ◽  
Donna E. Hansel

Our study shows that saliva is a noninvasive respiratory secretion sample type that contains equal or more host materials (RNase P), compared with those contained in the corresponding NP swab specimens, in 103 paired samples. SARS-CoV-2 detection with two RNA extraction platforms, Maxwell and MagNA Pure, with CDC qPCR chemistry showed similar test sensitivities for paired specimens.


2020 ◽  
Author(s):  
yanxia liu ◽  
zhengan cao ◽  
mei chen ◽  
Yan zhong ◽  
yuhao luo ◽  
...  

Background: Real-time reverse transcription PCR (rRT-PCR) is commonly used to diagnose SARS-CoV-2 infection. Heat inactivation prior to nucleic acid isolation may allow safe testing, while the effects of heat inactivation on SARS-CoV-2 rRT-PCR detection result need to be determined. Methods: 14 positive nasopharyngeal swab specimens were inactivated at 56°C for 30min, 56°C for 60min, 60°C for 30min, 60°C for 75min, and 100°C for 10min, and another 2 positive nasopharyngeal swab specimens were also inactivated at 100°C for 10min, 100°C for 30min, 100°C for 60min, after which the samples were isolated and detected by rRT-PCR. Results: All 14 heat treated samples remained positive. The range of threshold cycle (Ct) values observed when detecting ORF1a/b was 27.228-34.011 in heat-treated samples, while 25.281-34.861 in unheated samples, and the range of threshold cycle (Ct) values observed at the time of detecting N was 25.777-33.351 in heat-treated samples, while 24.1615-35.433 in unheated samples, on basis of which it showed no statistical difference otherwise a good correlation of Ct values between the heat-inactivated samples and the untreated samples. However, the 2 samples inactivated at 100°C 30min, 100°C 60min turned into negative. Conclusions: Heat inactivation at 56°C for 30min, 56°C for 60min, 60°C for 30min, 60°C for 75min, and 100°C for 10min shall not affect the detection results of Real-Time Reverse Transcription PCR of the SARS-COV2. Furthermore, it is recommended to inactive nasopharyngeal swab specimens 10min at 100°C before RNA extraction in consideration of efficiency and reliable results. Key Words: SARS-CoV-2, Heat Inactivation, rRT-PCR, Comparison


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michela Deiana ◽  
Antonio Mori ◽  
Chiara Piubelli ◽  
Salvatore Scarso ◽  
Mosè Favarato ◽  
...  

Abstract Droplet digital PCR (ddPCR) is a sensitive and reproducible technology widely used for quantitation of several viruses. The aim of this study was to evaluate the 2019-nCoV CDC ddPCR Triplex Probe Assay (BioRad) performance, comparing the direct quantitation of SARS-CoV-2 on nasopharyngeal swab with the procedure applied to the extracted RNA. Moreover, two widely used swab types were compared (UTM 3 mL and ESwab 1 mL, COPAN). A total of 50 nasopharyngeal swabs (n = 25 UTM 3 mL and n = 25 ESwab 1 mL) from SARS-CoV-2 patients, collected during the pandemic at IRCCS Sacro Cuore Don Calabria Hospital (Veneto Region, North-East Italy), were used for our purpose. After heat inactivation, an aliquot of swab medium was used for the direct quantitation. Then, we compared the direct method with the quantitation performed on the RNA purified from nasopharyngeal swab by automated extraction. We observed that the direct approach achieved generally equal RNA copies compared to the extracted RNA. The results with the direct quantitation were more accurate on ESwab with a sensitivity of 93.33% [95% CI, 68.05 to 99.83] and specificity of 100.00% for both N1 and N2. On the other hand, on UTM we observed a higher rate of discordant results for N1 and N2. The human internal amplification control (RPP30) showed 100% of both sensitivity and specificity independent of swabs and approaches. In conclusion, we described a direct quantitation of SARS-CoV-2 in nasopharyngeal swab. Our approach resulted in an efficient quantitation, without automated RNA extraction and purification. However, special care needs to be taken on the potential bias due to the conservation of samples and to the heating treatment, as we used thawed and heat inactivated material. Further studies on a larger cohort of samples are warranted to evaluate the clinical value of this direct approach.


2020 ◽  
Vol 15 (15) ◽  
pp. 1483-1487
Author(s):  
Nikhil S Sahajpal ◽  
Ashis K Mondal ◽  
Allan Njau ◽  
Sudha Ananth ◽  
Kimya Jones ◽  
...  

RT-PCR-based assays for the detection of SARS-CoV-2 have played an essential role in the current COVID-19 pandemic. However, the sample collection and test reagents are in short supply, primarily due to supply chain issues. Thus, to eliminate testing constraints, we have optimized three key process variables: RNA extraction and RT-PCR reactions, different sample types and media to facilitate SARS-CoV-2 testing. By performing various validation and bridging studies, we have shown that various sample types such as nasopharyngeal swab, bronchioalveolar lavage and saliva, collected using conventional nasopharyngeal swabs, ESwab or 3D-printed swabs and, preserved in viral transport media, universal transport media, 0.9% sodium chloride or Amies media are compatible with RT-PCR assay for COVID-19. Besides, the reduction of PCR reagents by up to fourfold also produces reliable results.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 615
Author(s):  
Allen Wing-Ho Chu ◽  
Cyril Chik-Yan Yip ◽  
Wan-Mui Chan ◽  
Anthony Chin-Ki Ng ◽  
Dream Lok-Sze Chan ◽  
...  

SARS-CoV-2 RT-PCR with pooled specimens has been implemented during the COVID-19 pandemic as a cost- and manpower-saving strategy for large-scale testing. However, there is a paucity of data on the efficiency of different nucleic acid extraction platforms on pooled specimens. This study compared a novel automated high-throughput liquid-based RNA extraction (LRE) platform (PHASIFYTM) with a widely used magnetic bead-based total nucleic acid extraction (MBTE) platform (NucliSENS® easyMAG®). A total of 60 pools of nasopharyngeal swab and 60 pools of posterior oropharyngeal saliva specimens, each consisting of 1 SARS-CoV-2 positive and 9 SARS-CoV-2 negative specimens, were included for the comparison. Real-time RT-PCR targeting the SARS-CoV-2 RdRp/Hel gene was performed, and GAPDH RT-PCR was used to detect RT-PCR inhibitors. No significant differences were observed in the Ct values and overall RT-PCR positive rates between LRE and MBTE platforms (92.5% (111/120] vs 90% (108/120]), but there was a slightly higher positive rate for LRE (88.3% (53/60]) than MBTE (81.7% (49/60]) among pooled saliva. The automated LRE method is comparable to a standard MBTE method for the detection of SAR-CoV-2 in pooled specimens, providing a suitable alternative automated extraction platform. Furthermore, LRE may be better suited for pooled saliva specimens due to more efficient removal of RT-PCR inhibitors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shan Wei ◽  
Esther Kohl ◽  
Alexandre Djandji ◽  
Stephanie Morgan ◽  
Susan Whittier ◽  
...  

AbstractThe COVID-19 pandemic has resulted in an urgent need for a rapid, point of care diagnostic testing that could be rapidly scaled on a worldwide level. We developed and tested a highly sensitive and robust assay based on reverse transcription loop mediated isothermal amplification (RT-LAMP) that uses readily available reagents and a simple heat block using contrived spike-in and actual clinical samples. RT-LAMP testing on RNA-spiked samples showed a limit of detection (LoD) of 2.5 copies/μl of viral transport media. RT-LAMP testing directly on clinical nasopharyngeal swab samples in viral transport media had an 85% positive percentage agreement (PPA) (17/20), and 100% negative percentage agreement (NPV) and delivered results in 30 min. Our optimized RT-LAMP based testing method is a scalable system that is sufficiently sensitive and robust to test for SARS-CoV-2 directly on clinical nasopharyngeal swab samples in viral transport media in 30 min at the point of care without the need for specialized or proprietary equipment or reagents. This cost-effective and efficient one-step testing method can be readily available for COVID-19 testing world-wide, especially in resource poor settings.


Sign in / Sign up

Export Citation Format

Share Document