scholarly journals Candida auris is rendered non-viable by medium-chain fatty acids

2021 ◽  
Author(s):  
Kalynne R Green ◽  
Kearney T. W. Gunsalus ◽  
Magdia De Jesus

The medium-chain fatty acids, octanoic and decanoic acid, found in coconut oil, were fungistatic and decanoic acid was fungicidal against a panel of Candida auris strains, during both planktonic and biofilm growth. The strains were from all four major geographic clades, and some were resistant to several classes of antifungal drugs. These compounds are safe, natural products and could provide a new strategy for skin decolonization and environmental decontamination.

1993 ◽  
Vol 69 (2) ◽  
pp. 431-442 ◽  
Author(s):  
E. Guillot ◽  
P. Vaugelade ◽  
P. Lemarchali ◽  
A. Re Rat

In order to study the rate of intestinal absorption and hepatic uptake of medium-chain fatty acids (MCFA), six growing pigs, mean body weight 65 kg, were fitted with a permanent fistula in the duodenum and with three catheters in the portal vein, carotid artery and hepatic vein respectively. Two electromagnetic flow probes were also set up, one around the portal vein and one around the hepatic artery. A mixture of octanoic and decanoic acids, esterified as medium-chain triacylglycerols, together with maltose dextrine and a nitrogenous fraction was continuously infused for 1 h into the duodenum. Samples of blood were withdrawn from the three vessels at regular intervals for 12 h and further analysed for their non-esterified octanoic and decanoic acid contents. The concentration of non-esterified octanoic and decanoic acids in the portal blood rose sharply after the beginning of each infusion and showed a biphasic time-course with two maximum values, one after 15 min and a later one between 75 and 90 min. Only 65 % of octanoic acid infused into the duodenum and 54 % of decanoic acid were recovered in the portal flow throughout each experiment. The amounts of non-esterified MCFA taken up per h by the liver were close to those absorbed from the gut via the portal vein within the same periods of time, showing that the liver is the main site of utilization of MCFA in pigs. These results have been discussed with a special emphasis laid on the possible mechanisms of the biphasic time-course of MCFA absorption and the incomplete recovery in the portal blood of the infused fatty acids.


2021 ◽  
Vol 22 (12) ◽  
pp. 6453
Author(s):  
Qi Hui Sam ◽  
Hua Ling ◽  
Wen Shan Yew ◽  
Zhaohong Tan ◽  
Sharada Ravikumar ◽  
...  

Fatty acids are derived from diet and fermentative processes by the intestinal flora. Two to five carbon chain fatty acids, termed short chain fatty acids (SCFA) are increasingly recognized to play a role in intestinal homeostasis. However, the characteristics of slightly longer 6 to 10 carbon, medium chain fatty acids (MCFA), derived primarily from diet, are less understood. Here, we demonstrated that SCFA and MCFA have divergent immunomodulatory propensities. SCFA down-attenuated host pro-inflammatory IL-1β, IL-6, and TNFα response predominantly through the TLR4 pathway, whereas MCFA augmented inflammation through TLR2. Butyric (C4) and decanoic (C10) acid displayed most potent modulatory effects within the SCFA and MCFA, respectively. Reduction in TRAF3, IRF3 and TRAF6 expression were observed with butyric acid. Decanoic acid induced up-regulation of GPR84 and PPARγ and altered HIF-1α/HIF-2α ratio. These variant immune characteristics of the fatty acids which differ by just several carbon atoms may be attributable to their origins, with SCFA being primarily endogenous and playing a physiological role, and MCFA exogenously from the diet.


2020 ◽  
Vol 10 (3) ◽  
pp. 485-492
Author(s):  
K. H. El-Kholy ◽  
A. I. A. Ghonim ◽  
M. A. Ahmed ◽  
Hoda A. Gad ◽  
Mervat N. Ghazal ◽  
...  

2013 ◽  
Vol 16 (12) ◽  
pp. 1079-1085 ◽  
Author(s):  
Michael Shilling ◽  
Laurie Matt ◽  
Evelyn Rubin ◽  
Mark Paul Visitacion ◽  
Nairmeen A. Haller ◽  
...  

2019 ◽  
Vol 4 (2) ◽  
pp. 1051-1059 ◽  
Author(s):  
Roger A Cochrane ◽  
Steve S Dritz ◽  
Jason C Woodworth ◽  
Charles R Stark ◽  
Marut Saensukjaroenphon ◽  
...  

Abstract: The overall objective of this study was to compare the efficacy of medium-chain fatty acids (MCFA) to other common fat sources to minimize the risk of porcine epidemic diarrhea virus (PEDV) cross-contamination in a pig bioassay. Treatments were feed with mitigants inoculated with PEDV after application and were: 1) positive control with no chemical treatment; 2) 0.325% commercially available formaldehyde-based product; 3) 1% blend of 1:1:1 caproic (C6), caprylic (C8), and capric acids (C10) and applied with an aerosolizing nozzle; 4) treatment 3 applied directly into the mixer without an aerosolizing nozzle; 5) 0.66% caproic acid; 6) 0.66% caprylic acid; 7) 0.66% capric acid; 8) 0.66% lauric acid; 9) 1% blend of 1:1 capric and lauric acids; 10) 0.3% commercially available dry C12 product; 11) 1% canola oil; 12) 1% choice white grease; 13) 2% coconut oil; 14) 1% coconut oil; 15) 2% palm kernel oil; 16) 1% palm kernel oil; 17) 1% soy oil and four analysis days (0, 1, 3, and 7 post inoculation) as well as 1 treatment of PEDV-negative feed without chemical treatment. There was a treatment × day interaction (P < 0.002) for detectable PEDV RNA. The magnitude of the increase in Ct value from d 0 to 7 was dependent upon the individual treatments. Feed treated with individual MCFA, 1% MCFA blend, or commercial-based formaldehyde had fewer (P < 0.05) detectable viral particles than all other treatments. Commercial-based formaldehyde, 1% MCFA, 0.66% caproic, 0.66% caprylic, and 0.66% capric acids had no evidence of infectivity 10-d old pig bioassay, while there was no evidence the C12 commercial product or longer chain fat sources inhibited PEDV infectivity. Interestingly, pigs given the coconut oil source with the highest composition of caprylic and capric only showed signs of infectivity on the last day of bioassay. These data suggest some MCFA have potential for reducing post feed manufacture PEDV contamination.


KIMIKA ◽  
2017 ◽  
Vol 28 (2) ◽  
pp. 48-54
Author(s):  
Fabian M. Dayrit

This second in this series of papers will present the biases in the American Heart Association’s 2017 Presidential Advisory with respect to saturated fat. Although important differences in the metabolic properties of specific SFA have been known since the 1960s, the AHA still considers all SFA as one group having the same properties. There is abundant research available that supports the designation of C6 to C12 fatty acids as medium-chain fatty acids (MCFA). This is particularly relevant to coconut oil, which is made up of about 65% MCFA. Ignoring the evidence, AHA simply labels coconut oil as SFA. The AHA promotes half-truths, not the whole truth.


2019 ◽  
Vol 64 (2) ◽  
pp. 68-77
Author(s):  
V. N. Titov ◽  
G. A. Ivanov ◽  
A. M. Antonov

Although the biochemistry of the positive effects of medium-chain fatty acids (FA) and triglycerides (TG) of the same name in vivo is not fully understood, food enriched with medium-chain LC and the same TG is effective in patients with type I diabetes, insulin resistance syndrome and in neurodegenerative pathology. Lauric C12 LC is half the FA in coconut oil. Residents of southeast Asia with constant use of coconut oil, have a low level of diseases of the cardiovascular system in the population. With a regulatory intake with food C12:0 laurin FA formed moderate ketosis and neuroprotective effect. Unlike long-chain LC, medium-chain TG cells are not deposited either in visceral fat cells, or in insulin-dependent adipocytes. Medium-chain fatty acids rapidly oxidize mitochondria; the formation of acetyl-CoA cells is used to form ketone bodies, activating thermogenesis in orange and brown adipocytes. Experiments with animals and observations in the clinic showed that taking medium-chain TG with food is more physiological than long-chain oils. This significantly increases the level of cholesterol in high-density lipoproteins. Food enriched with medium chain TG is optimal for increasing the ketone content in blood plasma, cerebrospinal fluid without limiting the carbohydrate content in food. The formation of excess ketone bodies by cells can be achieved by activating the metabolic transformations of medium-chain FAs, without fasting and preserving carbohydrates in food. Coconut oil has a positive effect on the cardiovascular system, preventing the formation of atherosclerosis and atheromatosis. Effective in the prevention of the pathology of the cardiovascular system is a decrease in food amounts of palmitic acid, an increase in oleic acid, polyene FA with a simultaneous increase in the proportion of medium-chain FA.


Sign in / Sign up

Export Citation Format

Share Document