scholarly journals Encoding time in neural dynamic regimes with distinct computational tradeoffs

2021 ◽  
Author(s):  
Shanglin Zhou ◽  
Sotiris C. Masmanidis ◽  
Dean V. Buonomano

Converging evidence suggests the brain encodes time in time-varying patterns of neural activity, including neural sequences, ramping activity, and complex dynamics. Temporal tasks that require producing the same time-dependent output patterns may have distinct computational requirements in regard to the need to exhibit temporal scaling or generalize to novel contexts. It is not known how neural circuits can both encode time and satisfy distinct computational and generalization requirements, it is also not known whether similar patterns of neural activity at the population level can emerge from distinctly different network configurations. To begin to answer these questions, we trained RNNs on two timing tasks based on behavioral studies. The tasks had different input structures but required producing identically timed output patterns. Using a novel framework we quantified whether RNNs encoded two intervals using either of three different timing strategies: scaling, absolute, or stimulus-specific dynamics. We found that similar neural dynamics for single intervals were associated with fundamentally different encoding strategies and network configurations. Critically, some regimes were better suited for generalization, categorical timing, or robustness to noise. Further analysis revealed different connection patterns underlying the different encoding strategies. Our results predict that apparently similar neural dynamic regimes at the population level can be produced through fundamentally different mechanisms—e.g., in regard to network connectivity and the role of excitatory and inhibitory neurons. We also predict that the task structure used in different experimental studies accounts for some of the experimentally observed variability in how networks encode time.

2020 ◽  
Author(s):  
Klara Kaleb ◽  
Victor Pedrosa ◽  
Claudia Clopath

AbstractDespite ongoing experiential change, neural activity maintains remarkable stability. Such stability is thought to be mediated by homeostatic plasticity and is deemed to be critical for normal neural function. However, what aspect of neural activity does homeostatic plasticity conserve, and how it still maintains the flexibility necessary for learning and memory, is not fully understood. Homeostatic plasticity is often studied in the context of neuron-centered control, where the deviations from the target activity for each individual neuron are suppressed. However, experimental studies suggest that there are additional, network-centered mechanisms. These may act through the inhibitory neurons, due to their dense network connectivity. Here we use a computational framework to study a potential mechanism for such homeostasis, using experimentally inspired, input-dependent inhibitory plasticity (IDIP). In a hippocampal CA1 spiking model, we show that IDIP in combination with place tuned input can explain the formation of active and silent place cells, as well as place cells remapping following optogenetic silencing of active place cells. Furthermore, we show that IDIP can also stabilise recurrent network dynamics, as well as preserve network firing rate heterogeneity and stimulus representation. Interestingly, in an associative memory task, IDIP facilitates persistent activity after memory encoding, in line with some experimental data. Hence, the establishment of global network balance with IDIP has diverse functional implications and may be able to explain experimental phenomena across different brain areas.


2017 ◽  
Author(s):  
Juan A. Gallego ◽  
Matthew G. Perich ◽  
Stephanie N. Naufel ◽  
Christian Ethier ◽  
Sara A. Solla ◽  
...  

AbstractHow do populations of cortical neurons have the flexibility to perform different functions? We investigated this question in primary motor cortex (M1), where populations of neurons are able to generate a rich repertoire of motor behaviors. We recorded neural activity while monkeys performed a variety of wrist and reach-to-grasp motor tasks, each requiring a different pattern of neural activity. We characterized the flexibility of M1 movement control by comparing the “neural modes” that capture covariation across neurons, believed to arise from network connectivity. We found large similarities in the structure of the neural modes across tasks, as well as striking similarities in their temporal activation dynamics. These similarities were only apparent at the population level. Moreover, a subset of these well-preserved modes captured a task-independent mapping onto muscle commands. We hypothesize that this system of flexibly combined, stable neural modes gives M1 the flexibility to generate our wide-ranging behavioral repertoire.


2000 ◽  
Vol 83 (2) ◽  
pp. 808-827 ◽  
Author(s):  
P. E. Latham ◽  
B. J. Richmond ◽  
P. G. Nelson ◽  
S. Nirenberg

Many networks in the mammalian nervous system remain active in the absence of stimuli. This activity falls into two main patterns: steady firing at low rates and rhythmic bursting. How are these firing patterns generated? Specifically, how do dynamic interactions between excitatory and inhibitory neurons produce these firing patterns, and how do networks switch from one firing pattern to the other? We investigated these questions theoretically by examining the intrinsic dynamics of large networks of neurons. Using both a semianalytic model based on mean firing rate dynamics and simulations with large neuronal networks, we found that the dynamics, and thus the firing patterns, are controlled largely by one parameter, the fraction of endogenously active cells. When no endogenously active cells are present, networks are either silent or fire at a high rate; as the number of endogenously active cells increases, there is a transition to bursting; and, with a further increase, there is a second transition to steady firing at a low rate. A secondary role is played by network connectivity, which determines whether activity occurs at a constant mean firing rate or oscillates around that mean. These conclusions require only conventional assumptions: excitatory input to a neuron increases its firing rate, inhibitory input decreases it, and neurons exhibit spike-frequency adaptation. These conclusions also lead to two experimentally testable predictions: 1) isolated networks that fire at low rates must contain endogenously active cells and 2) a reduction in the fraction of endogenously active cells in such networks must lead to bursting.


Parasitology ◽  
2009 ◽  
Vol 136 (14) ◽  
pp. 1935-1942 ◽  
Author(s):  
F. TRIPET

SUMMARYThere has been a recent shift in the literature on mosquito/Plasmodium interactions with an increasingly large number of theoretical and experimental studies focusing on their population biology and evolutionary processes. Ecological immunology of mosquito-malaria interactions – the study of the mechanisms and function of mosquito immune responses to Plasmodium in their ecological and evolutionary context – is particularly important for our understanding of malaria transmission and how to control it. Indeed, describing the processes that create and maintain variation in mosquito immune responses and parasite virulence in natural populations may be as important to this endeavor as describing the immune responses themselves. For historical reasons, Ecological Immunology still largely relies on studies based on non-natural model systems. There are many reasons why current research should favour studies conducted closer to the field and more realistic experimental systems whenever possible. As a result, a number of researchers have raised concerns over the use of artificial host-parasite associations to generate inferences about population-level processes. Here I discuss and review several lines of evidence that, I believe, best illustrate and summarize the limitations of inferences generated using non-natural model systems.


Cell Reports ◽  
2020 ◽  
Vol 32 (6) ◽  
pp. 108006 ◽  
Author(s):  
Xiyuan Jiang ◽  
Hemant Saggar ◽  
Stephen I. Ryu ◽  
Krishna V. Shenoy ◽  
Jonathan C. Kao

2020 ◽  
Vol 14 ◽  
Author(s):  
David A. Tovar ◽  
Jacob A. Westerberg ◽  
Michele A. Cox ◽  
Kacie Dougherty ◽  
Thomas A. Carlson ◽  
...  

Most of the mammalian neocortex is comprised of a highly similar anatomical structure, consisting of a granular cell layer between superficial and deep layers. Even so, different cortical areas process different information. Taken together, this suggests that cortex features a canonical functional microcircuit that supports region-specific information processing. For example, the primate primary visual cortex (V1) combines the two eyes' signals, extracts stimulus orientation, and integrates contextual information such as visual stimulation history. These processes co-occur during the same laminar stimulation sequence that is triggered by the onset of visual stimuli. Yet, we still know little regarding the laminar processing differences that are specific to each of these types of stimulus information. Univariate analysis techniques have provided great insight by examining one electrode at a time or by studying average responses across multiple electrodes. Here we focus on multivariate statistics to examine response patterns across electrodes instead. Specifically, we applied multivariate pattern analysis (MVPA) to linear multielectrode array recordings of laminar spiking responses to decode information regarding the eye-of-origin, stimulus orientation, and stimulus repetition. MVPA differs from conventional univariate approaches in that it examines patterns of neural activity across simultaneously recorded electrode sites. We were curious whether this added dimensionality could reveal neural processes on the population level that are challenging to detect when measuring brain activity without the context of neighboring recording sites. We found that eye-of-origin information was decodable for the entire duration of stimulus presentation, but diminished in the deepest layers of V1. Conversely, orientation information was transient and equally pronounced along all layers. More importantly, using time-resolved MVPA, we were able to evaluate laminar response properties beyond those yielded by univariate analyses. Specifically, we performed a time generalization analysis by training a classifier at one point of the neural response and testing its performance throughout the remaining period of stimulation. Using this technique, we demonstrate repeating (reverberating) patterns of neural activity that have not previously been observed using standard univariate approaches.


Author(s):  
Meryem Kanzari ◽  
Mohammed AlQaradawi ◽  
Balakumar Balachandran

Flexible, rotating structures can experience complex dynamics, when torsional and lateral motions are involved. Oilwell drill strings form one example of such structures. In the present study, the authors investigate the influence of sinusoidal drive speed modulation on whirling motions of flexible rotors with contact interactions. For two types of drilling-like operations, one with drill mud and another without drill mud, the stability of motions is studied. A laboratory-scale drill rig is used to study the dynamics of a flexible rotor, which is driven at one end and housed within a stator at the other end. Experimental results are presented and discussed for different drive speeds. The findings suggest that the addition of drill mud in the annular space between the rotor and stator along with high-frequency modulation in the drive input helps attenuate lateral motions. The torsional motions appear to be influenced more by the high-frequency drive speed modulation. A three-degree-of-freedom model has been constructed to study lateraltorsional dynamics of a rotor-stator system. The model predictions are compared with the experimental data. The findings of this work have relevance for constructing practical solutions to control whirl dynamics of flexible rotors such as drill strings.


2008 ◽  
Vol 20 (2) ◽  
pp. 415-435 ◽  
Author(s):  
Ryosuke Hosaka ◽  
Osamu Araki ◽  
Tohru Ikeguchi

Spike-timing-dependent synaptic plasticity (STDP), which depends on the temporal difference between pre- and postsynaptic action potentials, is observed in the cortices and hippocampus. Although several theoretical and experimental studies have revealed its fundamental aspects, its functional role remains unclear. To examine how an input spatiotemporal spike pattern is altered by STDP, we observed the output spike patterns of a spiking neural network model with an asymmetrical STDP rule when the input spatiotemporal pattern is repeatedly applied. The spiking neural network comprises excitatory and inhibitory neurons that exhibit local interactions. Numerical experiments show that the spiking neural network generates a single global synchrony whose relative timing depends on the input spatiotemporal pattern and the neural network structure. This result implies that the spiking neural network learns the transformation from spatiotemporal to temporal information. In the literature, the origin of the synfire chain has not been sufficiently focused on. Our results indicate that spiking neural networks with STDP can ignite synfire chains in the cortices.


2020 ◽  
Author(s):  
Mie Ichihara

<p>In the earth and planetary sciences, the term "analog experiment" indicates laboratory experiments that use analog materials to investigate natural processes. Scaled experiments constitute a representative sub-category of analog experiments. They are designed to have the same dominant dimensionless parameter in the same range as the targeted natural processes. Other primary uses of analog experiments are education and outreach. Reproducing similar phenomena in front of the audience is useful in explaining the essence of the complex dynamics of natural processes. However, it is often the case that we do not fully understand the physics of the experimental systems or the targeted natural phenomena. In such cases, especially when the process is complex, it is difficult to guarantee the scaling similarity. When we take such laboratory phenomena as a research subject of earth science, we encounter critical comments about the scaling issue.</p><p>Nevertheless, I think it scientifically important to consider questions like follows. What is the mechanism of the experimental phenomena? Why the behaviors of the experiment look similar to the natural phenomena? To what extent the laboratory and the natural systems are similar. To indicate experimental studies to elucidate these questions, I would like to define "analogy experiment" as a new sub-category of analog experiments.  Some recent experiments are presented as examples.</p>


2017 ◽  
Vol 114 (50) ◽  
pp. 13290-13295 ◽  
Author(s):  
Victoria Leong ◽  
Elizabeth Byrne ◽  
Kaili Clackson ◽  
Stanimira Georgieva ◽  
Sarah Lam ◽  
...  

When infants and adults communicate, they exchange social signals of availability and communicative intention such as eye gaze. Previous research indicates that when communication is successful, close temporal dependencies arise between adult speakers’ and listeners’ neural activity. However, it is not known whether similar neural contingencies exist within adult–infant dyads. Here, we used dual-electroencephalography to assess whether direct gaze increases neural coupling between adults and infants during screen-based and live interactions. In experiment 1 (n = 17), infants viewed videos of an adult who was singing nursery rhymes with (i) direct gaze (looking forward), (ii) indirect gaze (head and eyes averted by 20°), or (iii) direct-oblique gaze (head averted but eyes orientated forward). In experiment 2 (n = 19), infants viewed the same adult in a live context, singing with direct or indirect gaze. Gaze-related changes in adult–infant neural network connectivity were measured using partial directed coherence. Across both experiments, the adult had a significant (Granger) causal influence on infants’ neural activity, which was stronger during direct and direct-oblique gaze relative to indirect gaze. During live interactions, infants also influenced the adult more during direct than indirect gaze. Further, infants vocalized more frequently during live direct gaze, and individual infants who vocalized longer also elicited stronger synchronization from the adult. These results demonstrate that direct gaze strengthens bidirectional adult–infant neural connectivity during communication. Thus, ostensive social signals could act to bring brains into mutual temporal alignment, creating a joint-networked state that is structured to facilitate information transfer during early communication and learning.


Sign in / Sign up

Export Citation Format

Share Document