scholarly journals Stimulus Feature-Specific Information Flow Along the Columnar Cortical Microcircuit Revealed by Multivariate Laminar Spiking Analysis

2020 ◽  
Vol 14 ◽  
Author(s):  
David A. Tovar ◽  
Jacob A. Westerberg ◽  
Michele A. Cox ◽  
Kacie Dougherty ◽  
Thomas A. Carlson ◽  
...  

Most of the mammalian neocortex is comprised of a highly similar anatomical structure, consisting of a granular cell layer between superficial and deep layers. Even so, different cortical areas process different information. Taken together, this suggests that cortex features a canonical functional microcircuit that supports region-specific information processing. For example, the primate primary visual cortex (V1) combines the two eyes' signals, extracts stimulus orientation, and integrates contextual information such as visual stimulation history. These processes co-occur during the same laminar stimulation sequence that is triggered by the onset of visual stimuli. Yet, we still know little regarding the laminar processing differences that are specific to each of these types of stimulus information. Univariate analysis techniques have provided great insight by examining one electrode at a time or by studying average responses across multiple electrodes. Here we focus on multivariate statistics to examine response patterns across electrodes instead. Specifically, we applied multivariate pattern analysis (MVPA) to linear multielectrode array recordings of laminar spiking responses to decode information regarding the eye-of-origin, stimulus orientation, and stimulus repetition. MVPA differs from conventional univariate approaches in that it examines patterns of neural activity across simultaneously recorded electrode sites. We were curious whether this added dimensionality could reveal neural processes on the population level that are challenging to detect when measuring brain activity without the context of neighboring recording sites. We found that eye-of-origin information was decodable for the entire duration of stimulus presentation, but diminished in the deepest layers of V1. Conversely, orientation information was transient and equally pronounced along all layers. More importantly, using time-resolved MVPA, we were able to evaluate laminar response properties beyond those yielded by univariate analyses. Specifically, we performed a time generalization analysis by training a classifier at one point of the neural response and testing its performance throughout the remaining period of stimulation. Using this technique, we demonstrate repeating (reverberating) patterns of neural activity that have not previously been observed using standard univariate approaches.

2019 ◽  
Author(s):  
David A. Tovar ◽  
Jacob A. Westerberg ◽  
Michele A. Cox ◽  
Kacie Dougherty ◽  
Thomas Carlson ◽  
...  

AbstractThe vast majority of mammalian neocortex consists of a stereotypical microcircuit, the canonical cortical microcircuit (CCM), consisting of a granular input layer, positioned between superficial and deep layers. Due to this uniform layout, neuronal activation tends to follow a similar laminar sequence, with unique information extracted at each step. For example, the primate primary visual cortex (V1) combines the two eyes’ signals, extracts stimulus orientation and modulates its activity depending on stimulus history. Several theories have been proposed on when and where these processes happen within the CCM’s laminar activation sequence, but it has been methodologically challenging to test these hypotheses. Here, we use time-resolved multivariate pattern analysis (MVPA) to decode information regarding the eye-of-origin, stimulus orientation and stimulus repetition from simultaneously measured spiking responses across V1’s laminar microcircuit. We find that eye-of-origin information was decodable for the entire duration of stimulus presentation, but diminished in the deepest layers of V1, consistent with the notion that two eyes’ signals are combined within the upper layers. Conversely, orientation information was transient and equally pronounced across the microcircuit, in line with the idea that this information is relayed to other areas for further processing. Moreover, when stimuli were repeated, information regarding orientation was enhanced at the expense of eye-of origin information, suggesting that V1 modulates information flow to optimize specific stimulus dimensions. Taken together, these findings provide empirical evidence that adjudicates between long-standing hypotheses and reveals how information transfer within the CCM supports unique cortical functions.Significance StatementDespite the brain’s daunting complexity, there are common organizing principles across brain areas. For example, neocortical activation follows a stereotypical pattern that spreads from input layers towards layers above and below. While this activation pattern is well known, it has been challenging to ascertain how unique types of information are extracted within this common sequence in different brain areas. Here we use machine learning to track the flow of stimulus-specific information across the layers of visual cortex. We found that information regarding several separate stimulus dimensions was routed uniquely within the common activation sequence in a manner that confirmed prior model predictions. This finding demonstrates how differences in information flow within the stereotypical neocortical activation sequence shape area-specific functions.


2018 ◽  
Vol 25 (10) ◽  
pp. 1055-1062 ◽  
Author(s):  
Edoardo Casiglia ◽  
Valérie Tikhonoff ◽  
Federica Albertini ◽  
Federica Gasparotti ◽  
Alberto Mazza ◽  
...  

Background The general belief is that caffeine increases the risk of hyperkinetic arrhythmias, including atrial fibrillation. The aim of this study is to investigate the effect of chronic caffeine intake on incident atrial fibrillation in general population. Design and methods A population cohort of 1475 unselected men and women observed for 12 years and left free to intake food or beverages containing caffeine was studied. Subjects were stratified into tertiles of caffeine intake both in the whole cohort and after genotyping for the –163C > A polymorphism of the CYP1A2 gene, regulating caffeine metabolism. Results In the whole cohort, the 12-year incidence of atrial fibrillation was significantly lower in the third (2.2%) than in the first (10.2%) or second (5.7%) tertile of caffeine intake ( P < 0.001). The same trend was observed in all genotypes; the apparently steeper reduction of atrial fibrillation in slow caffeine metabolisers found at univariate analysis was proved wrong by multivariate Cox analysis. Age, chronic pulmonary disease, history of heart failure and of coronary artery disease, and systolic blood pressure − but not the genotype or the caffeine ×  CYP1A2 interaction term − were significant confounders of the association between incident atrial fibrillation and being in the third tertile of caffeine intake (hazard ratio 0.249, 95% confidence intervals 0.161–0.458, P < 0.01). Conclusions A higher caffeine intake (>165 mmol/day or > 320 mg/day) is associated with a lower incidence of atrial fibrillation in the 12-year epidemiological prospective setting based on the general population.


2004 ◽  
Vol 16 (9) ◽  
pp. 1669-1679 ◽  
Author(s):  
Emily D. Grossman ◽  
Randolph Blake ◽  
Chai-Youn Kim

Individuals improve with practice on a variety of perceptual tasks, presumably reflecting plasticity in underlying neural mechanisms. We trained observers to discriminate biological motion from scrambled (nonbiological) motion and examined whether the resulting improvement in perceptual performance was accompanied by changes in activation within the posterior superior temporal sulcus and the fusiform “face area,” brain areas involved in perception of biological events. With daily practice, initially naive observers became more proficient at discriminating biological from scrambled animations embedded in an array of dynamic “noise” dots, with the extent of improvement varying among observers. Learning generalized to animations never seen before, indicating that observers had not simply memorized specific exemplars. In the same observers, neural activity prior to and following training was measured using functional magnetic resonance imaging. Neural activity within the posterior superior temporal sulcus and the fusiform “face area” reflected the participants' learning: BOLD signals were significantly larger after training in response both to animations experienced during training and to novel animations. The degree of learning was positively correlated with the amplitude changes in BOLD signals.


2015 ◽  
Vol 9 ◽  
pp. 300-309 ◽  
Author(s):  
Erik S. te Woerd ◽  
Robert Oostenveld ◽  
Bastiaan R. Bloem ◽  
Floris P. de Lange ◽  
Peter Praamstra

2021 ◽  
Author(s):  
Aymen Sadaka ◽  
Ana Ozuna ◽  
Richard Ortiz ◽  
Praveen Kulkarni ◽  
Clare Johnson ◽  
...  

Abstract Background: The phytocannabinoid cannabidiol (CBD) is a potential treatment for post-traumatic stress disorders. How does CBD interact with the brain to alter behavior? We hypothesized that CBD would produce a dose-dependent reduction in brain activity and functional coupling in neural circuitry associated with fear and defense. Methods: During the scanning session awake mice were given vehicle or CBD (3, 10, or 30 mg/kg I.P.) and imaged for 10 min post treatment. Mice were also treated with the 10 mg/kg dose of CBD and imaged one hr later for resting state BOLD functional connectivity (rsFC). Imaging data were registered to a 3D MRI mouse atlas providing site-specific information on 138 different brain areas. Blood samples were collected for CBD measurements.Results: CBD produced a dose-dependent polarization of activation along the rostral-caudal axis of the brain. The olfactory bulb and prefrontal cortex showed an increase in positive BOLD whereas the brainstem and cerebellum showed a decrease in BOLD signal. This negative BOLD affected many areas connected to the ascending reticular activating system (ARAS). The ARAS was decoupled to much of the brain but was hyperconnected to the olfactory system and prefrontal cortex. The pattern of ARAS connectivity closely overlapped with brain areas showing high levels N-acyl-phosphatidylethanolamines-specific phospholipase D (NAPE-PLD) messenger RNA.Conclusion: The CBD-induced decrease in ARAS activity is consistent with an emerging literature suggesting that CBD reduces autonomic arousal under conditions of emotional and physical stress. The putative target and mechanism of action is NAPE-PLD the enzyme responsible for the biosynthesis of lipid signaling molecules like anandamide.


2017 ◽  
Vol 24 (3) ◽  
pp. 277-293 ◽  
Author(s):  
Selen Atasoy ◽  
Gustavo Deco ◽  
Morten L. Kringelbach ◽  
Joel Pearson

A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at “rest.” Here, we introduce the concept of harmonic brain modes—fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.


2018 ◽  
Author(s):  
Christian Keitel ◽  
Anne Keitel ◽  
Christopher SY Benwell ◽  
Christoph Daube ◽  
Gregor Thut ◽  
...  

Two largely independent research lines use rhythmic sensory stimulation to study visual processing. Despite the use of strikingly similar experimental paradigms, they differ crucially in their notion of the stimulus-driven periodic brain responses: One regards them mostly as synchronised (entrained) intrinsic brain rhythms; the other assumes they are predominantly evoked responses (classically termed steady-state responses, or SSRs) that add to the ongoing brain activity. This conceptual difference can produce contradictory predictions about, and interpretations of, experimental outcomes. The effect of spatial attention on brain rhythms in the alpha-band (8-13 Hz) is one such instance: alpha-range SSRs have typically been found to increase in power when participants focus their spatial attention on laterally presented stimuli, in line with a gain control of the visual evoked response. In nearly identical experiments, retinotopic decreases in entrained alpha-band power have been reported, in line with the inhibitory function of intrinsic alpha. Here we reconcile these contradictory findings by showing that they result from a small but far-reaching difference between two common approaches to EEG spectral decomposition. In a new analysis of previously published EEG data, recorded during bilateral rhythmic visual stimulation, we find the typical SSR gain effect when emphasising stimulus-locked neural activity and the typical retinotopic alpha suppression when focusing on ongoing rhythms. These opposite but parallel effects suggest that spatial attention may bias the neural processing of dynamic visual stimulation via two complementary neural mechanisms.


2019 ◽  
Author(s):  
Lin Wang ◽  
Edward Wlotko ◽  
Edward Alexander ◽  
Lotte Schoot ◽  
Minjae Kim ◽  
...  

AbstractIt has been proposed that people can generate probabilistic predictions at multiple levels of representation during language comprehension. We used Magnetoencephalography (MEG) and Electroencephalography (EEG), in combination with Representational Similarity Analysis (RSA), to seek neural evidence for the prediction of animacy features. In two studies, MEG and EEG activity was measured as human participants (both sexes) read three-sentence scenarios. Verbs in the final sentences constrained for either animate or inanimate semantic features of upcoming nouns, and the broader discourse context constrained for either a specific noun or for multiple nouns belonging to the same animacy category. We quantified the similarity between spatial patterns of brain activity following the verbs until just before the presentation of the nouns. The MEG and EEG datasets revealed converging evidence that the similarity between spatial patterns of neural activity following animate constraining verbs was greater than following inanimate constraining verbs. This effect could not be explained by lexical-semantic processing of the verbs themselves. We therefore suggest that it reflected the inherent difference in the semantic similarity structure of the predicted animate and inanimate nouns. Moreover, the effect was present regardless of whether a specific word could be predicted, providing strong evidence for the prediction of coarse-grained semantic features that goes beyond the prediction of individual words.Significance statementLanguage inputs unfold very quickly during real-time communication. By predicting ahead we can give our brains a “head-start”, so that language comprehension is faster and more efficient. While most contexts do not constrain strongly for a specific word, they do allow us to predict some upcoming information. For example, following the context, “they cautioned the…”, we can predict that the next word will be animate rather than inanimate (we can caution a person, but not an object). Here we used EEG and MEG techniques to show that the brain is able to use these contextual constraints to predict the animacy of upcoming words during sentence comprehension, and that these predictions are associated with specific spatial patterns of neural activity.


2021 ◽  
Author(s):  
Ye Li ◽  
William Bosking ◽  
Michael S Beauchamp ◽  
Sameer A Sheth ◽  
Daniel Yoshor ◽  
...  

Narrowband gamma oscillations (NBG: ~20-60Hz) in visual cortex reflect rhythmic fluctuations in population activity generated by underlying circuits tuned for stimulus location, orientation, and color. Consequently, the amplitude and frequency of induced NBG activity is highly sensitive to these stimulus features. For example, in the non-human primate, NBG displays biases in orientation and color tuning at the population level. Such biases may relate to recent reports describing the large-scale organization of single-cell orientation and color tuning in visual cortex, thus providing a potential bridge between measurements made at different scales. Similar biases in NBG population tuning have been predicted to exist in the human visual cortex, but this has yet to be fully examined. Using intracranial recordings from human visual cortex, we investigated the tuning of NBG to orientation and color, both independently and in conjunction. NBG was shown to display a cardinal orientation bias (horizontal) and also an end- and mid-spectral color bias (red/blue and green). When jointly probed, the cardinal bias for orientation was attenuated and an end-spectral preference for red and blue predominated. These data both elaborate on the close, yet complex, link between the population dynamics driving NBG oscillations and known feature selectivity biases in visual cortex, adding to a growing set of stimulus dependencies associated with the genesis of NBG. Together, these two factors may provide a fruitful testing ground for examining multi-scale models of brain activity, and impose new constraints on the functional significance of the visual gamma rhythm.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruiping Zheng ◽  
Yuan Chen ◽  
Yu Jiang ◽  
Mengmeng Wen ◽  
Bingqian Zhou ◽  
...  

Background: Major depressive disorder (MDD) has demonstrated abnormalities of static intrinsic brain activity measured by amplitude of low-frequency fluctuation (ALFF). Recent studies regarding the resting-state functional magnetic resonance imaging (rs-fMRI) have found the brain activity is inherently dynamic over time. Little is known, however, regarding the temporal dynamics of local neural activity in MDD. Here, we investigated whether temporal dynamic changes in spontaneous neural activity are influenced by MDD.Methods: We recruited 81 first-episode, drug-naive MDD patients and 64 age-, gender-, and education-matched healthy controls who underwent rs-fMRI. A sliding-window approach was then adopted for the estimation of dynamic ALFF (dALFF), which was used to measure time-varying brain activity and then compared between the two groups. The relationship between altered dALFF variability and clinical variables in MDD patients was also analyzed.Results: MDD patients showed increased temporal variability (dALFF) mainly focused on the bilateral thalamus, the bilateral superior frontal gyrus, the right middle frontal gyrus, the bilateral cerebellum posterior lobe, and the vermis. Furthermore, increased dALFF variability values in the right thalamus and right cerebellum posterior lobe were positively correlated with MDD symptom severity.Conclusions: The overall results suggest that altered temporal variability in corticocerebellar–thalamic–cortical circuit (CCTCC), involved in emotional, executive, and cognitive, is associated with drug-naive, first-episode MDD patients. Moreover, our study highlights the vital role of abnormal dynamic brain activity in the cerebellar hemisphere associated with CCTCC in MDD patients. These findings may provide novel insights into the pathophysiological mechanisms of MDD.


Sign in / Sign up

Export Citation Format

Share Document