scholarly journals Forward planning driven by context-dependent conflict processing in anterior cingulate cortex

2021 ◽  
Author(s):  
Florian Ott ◽  
Stefan Kiebel ◽  
Eric Legler

Forward planning is often essential to achieve goals over extended time periods. However, forward planning is typically computationally costly for the brain and should only be employed when necessary. The explicit calculation of how necessary forward planning will be, is in itself computationally costly. We therefore assumed that the brain generates a mapping from a particular situation to a proxy of planning value to make fast decisions about whether to use forward planning, or not. Moreover, since the state space of real world decision problems can be large, we hypothesized that such a mapping will rely on mechanisms that generalize sets of situations based on shared demand for planning. We tested this hypothesis in an fMRI study using a novel complex sequential task. Our results indicate that participants abstracted from the set of task features to more generalized control contexts that govern the balancing between forward planning and a simple response strategy. Strikingly, we found that correlations of conflict with response time and with activity in the dorsal anterior cingulate cortex were dependent on context. This context-dependency might reflect that the cognitive control system draws on category-based cognition, harnessing regularities in control demand across task space to generate control contexts that help reduce the complexity of control allocation decisions.

2019 ◽  
Author(s):  
Seng Bum Michael Yoo ◽  
Jiaxin Cindy Tu ◽  
Steven T. Piantadosi ◽  
Benjamin Yost Hayden

ABSTRACTIt remains unclear how and to what extent non-human animals make demanding on-the-fly predictions during pursuit. We studied this problem in a novel laboratory pursuit task that incentivizes prediction of future prey positions. We trained three macaques to perform joystick-controlled pursuit of prey that followed intelligent escape algorithms. Subjects reliably aimed towards the prey’s likely future positions, indicating that they generate internal predictions and use those predictions to guide behavior. We then developed a generative model that explains real-time pursuit trajectories and showed that our subjects use prey position, velocity, and acceleration to make predictions. We identified neurons in the dorsal anterior cingulate cortex (dACC) whose responses track these three variables. These neurons multiplexed prediction-related variables with a distinct and explicit representation of the prey’s future position. Our results provide a clear demonstration that the brain can explicitly represent future predictions and highlight the critical role of anterior cingulate cortex for future-oriented cognition.One-sentence summaryIn a dynamic pursuit environment, monkeys actively predict future prey positions and dACC neurons encode these future positions.


2021 ◽  
Vol 5 ◽  
pp. 239821282110077
Author(s):  
Mohammad Ali Salehinejad ◽  
Elham Ghanavati ◽  
Md Harun Ar Rashid ◽  
Michael A. Nitsche

Executive functions, or cognitive control, are higher-order cognitive functions needed for adaptive goal-directed behaviours and are significantly impaired in majority of neuropsychiatric disorders. Different models and approaches are proposed for describing how executive functions are functionally organised in the brain. One popular and recently proposed organising principle of executive functions is the distinction between hot (i.e. reward or affective-related) versus cold (i.e. purely cognitive) domains of executive functions. The prefrontal cortex is traditionally linked to executive functions, but on the other hand, anterior and posterior cingulate cortices are hugely involved in executive functions as well. In this review, we first define executive functions, their domains, and the appropriate methods for studying them. Second, we discuss how hot and cold executive functions are linked to different areas of the prefrontal cortex. Next, we discuss the association of hot versus cold executive functions with the cingulate cortex, focusing on the anterior and posterior compartments. Finally, we propose a functional model for hot and cold executive function organisation in the brain with a specific focus on the fronto-cingular network. We also discuss clinical implications of hot versus cold cognition in major neuropsychiatric disorders (depression, schizophrenia, anxiety disorders, substance use disorder, attention-deficit hyperactivity disorder, and autism) and attempt to characterise their profile according to the functional dominance or manifest of hot–cold cognition. Our model proposes that the lateral prefrontal cortex along with the dorsal anterior cingulate cortex are more relevant for cold executive functions, while the medial–orbital prefrontal cortex along with the ventral anterior cingulate cortex, and the posterior cingulate cortex are more closely involved in hot executive functions. This functional distinction, however, is not absolute and depends on several factors including task features, context, and the extent to which the measured function relies on cognition and emotion or both.


2009 ◽  
Vol 21 (8) ◽  
pp. 1642-1652 ◽  
Author(s):  
Johannes Hewig ◽  
Thomas Straube ◽  
Ralf H. Trippe ◽  
Nora Kretschmer ◽  
Holger Hecht ◽  
...  

Recent research has focused on decision-making under risk and its neural bases. Two kinds of bad decisions under risk may be defined: too risky decisions and too cautious decisions. Here we show that suboptimal decisions of both kinds lead to increased activity in the anterior cingulate cortex in a Blackjack gambling task. Moreover, this increased activity is related to the avoidance of the negatively evaluated decision under risk. These findings complement other results suggesting an important role of the dorsal anterior cingulate cortex in reward-based decision-making and conflict resolution.


Author(s):  
Debbie M. Yee ◽  
Jennifer L. Crawford ◽  
Bidhan Lamichhane ◽  
Todd S. Braver

AbstractHumans can seamlessly combine value signals from diverse motivational incentives, yet it is not well-understood how these signals are “bundled” in the brain to modulate cognitive control. The dorsal anterior cingulate cortex (dACC) is theorized to integrate motivational value dimensions in the service of goal-directed action, though this hypothesis has yet to receive rigorous confirmation. In the present study, we examined the role of human dACC in motivational incentive integration. Healthy young adult men and women were scanned with fMRI while engaged in an experimental paradigm that quantifies the combined effects of liquid (e.g., juice, neutral, saltwater) and monetary incentives on cognitive task performance. Monetary incentives modulated trial-by-trial dACC activation, whereas block-related effects of liquid incentives on dACC activity were observed. When bundled together, incentive-related dACC modulation predicted fluctuations in both cognitive performance and self-report motivation ratings. Statistical mediation analyses suggest that dACC encoded the incentives in terms of their integrated subjective motivational value, and that this value signal was most proximally associated with task performance. Finally, we confirmed that these incentive integration effects were selectively present in dACC. Together, the results support an account in which dACC integrates motivational signals to compute the expected value of goal-directed cognitive control.Significance StatementHow are primary and secondary incentives integrated in the brain to influence goal-directed behavior? Using an innovative experimental fMRI paradigm that combines motivational incentives that have historically been studied independently between species (e.g., monetary rewards for humans, food rewards for animals), we examine the relationship between incentive motivational value and cognitive control allocation. We find evidence that the integrated incentive motivational value of combined incentives is encoded in human dorsal anterior cingulate cortex (dACC). Further, self-reported motivational shifts mediated the effects of incentive-modulated dACC activity on task performance, revealing convergence in how self-reported and experimentally-induced motivation are encoded in the human brain. Our findings may inform future translational studies examining affective/motivational and cognitive impairments in psychopathology (e.g., anxiety, depression, addiction).


2018 ◽  
Author(s):  
Amir-Homayoun Javadi ◽  
Eva Zita Patai ◽  
Eugenia Marin-Garcia ◽  
Aaron Margois ◽  
Heng-Ru M. Tan ◽  
...  

AbstractCentral to the concept of the ‘cognitive map’ is that it confers behavioural flexibility, allowing animals to take efficient detours, exploit shortcuts and realise the need to back-track rather than persevere on a poorly chosen route. The neural underpinnings of such naturalistic and flexible behaviour remain unclear. During fMRI we tested human subjects on their ability to navigate to a set of goal locations in a virtual desert island riven by lava, which occasionally shifted to block selected paths (necessitating detours) or receded to open new paths (affording shortcuts). We found that during self-initiated back-tracking, activity increased in frontal regions and the dorsal anterior cingulate cortex, while activity in regions associated with the core default-mode network was suppressed. Detours activated a network of frontal regions compared to shortcuts. Activity in right dorsolateral prefrontal cortex specifically increased when participants encountered new plausible shortcuts but which in fact added to the path (false shortcuts). These results help inform current models as to how the brain supports navigation and planning in dynamic environments.Significance StatementAdaptation to change is important for survival. Although real-world spatial environments are prone to continual change, little is known about how the brain supports navigation in dynamic environments where flexible adjustments to route plans are needed. Here, we used fMRI to examine the brain activity elicited when humans took forced detours, identified shortcuts and spontaneously back-tracked along their recent path. Both externally and internally generated changes in the route activated the fronto-parietal attention network, whereas only internally generated changes generated increased activity in the dorsal anterior cingulate cortex with a concomitant disengagement in regions associated with the default-mode network. The results provide new insights into how the brain plans and re-plans in the face of a changing environment.


2020 ◽  
Author(s):  
Hayley Gilbertson ◽  
Lin Fang ◽  
Jeremy A. Andrzejewski ◽  
Joshua M. Carlson

AbstractThe error-related negativity (ERN) is a response-locked event-related potential, occurring approximately 50 ms following an erroneous response at frontocentral electrode sites. Source localization and functional magnetic resonance imaging (fMRI) research indicate that the ERN is likely generated by activity in the dorsal anterior cingulate cortex (dACC). The dACC is thought to be a part of a broader network of brain regions that collectively comprise an error-monitoring network. However, little is known about how intrinsic connectivity within the dACC-based error-monitoring network contributes to variability in ERN amplitude. The purpose of this study was to assess the relationship between dACC functional connectivity and ERN amplitude. In a sample of 53 highly trait-anxious individuals, the ERN was elicited in a flanker task and functional connectivity was assessed in a 10-minute resting-state fMRI scan. Results suggest that the strength of dACC seeded functional connectivity with the supplementary motor area is correlated with the ΔERN (i.e., incorrect – correct responses) amplitude such that greater ΔERN amplitude was accompanied by greater functional coupling between these regions. In addition to the dACC, exploratory analyses found that functional connectivity in the caudate, cerebellum, and a number of regions in the error-monitoring network were linked to variability in ΔERN amplitude. In sum, ERN amplitude appears to be related to the strength of functional connectivity between error-monitoring and motor control regions of the brain.


2017 ◽  
Vol 8 (4) ◽  
pp. 43-54
Author(s):  
E.A. Varshaver

This article contains a review of research in the realm of neurophysiology of ethnicity. According to this body of research, there are zones of the brain which get active in response to demonstration of ethnic stimuli. Among these zones are amygdala, anterior cingulate cortex, fusiform face area and others. The article describes the research focused on each of these zones, discusses their weaknesses and projects further research on the crossroads of neurophysiology, cognitive science, psychology and sociology.


2018 ◽  
Vol 53 (1) ◽  
pp. 68-79 ◽  
Author(s):  
Hui Juan Chen ◽  
Li Zhang ◽  
Jun Ke ◽  
Rongfeng Qi ◽  
Qiang Xu ◽  
...  

Objective: The brain functional alterations at regional and network levels in post-traumatic stress disorder patients are still unclear. This study explored brain functional alterations at regional and network levels in post-traumatic stress disorder patients with resting-state functional magnetic resonance imaging and evaluated the relationship between brain function and clinical indices in post-traumatic stress disorder. Methods: Amplitude of low-frequency fluctuation and seed-based functional connectivity analyses were conducted among typhoon survivors with ( n = 27) and without post-traumatic stress disorder ( n = 33) and healthy controls ( n = 30) to assess the spontaneous brain activity and network-level brain function. Pearson correlation analyses were performed to examine the association of brain function with clinical symptom and social support. Results: Both the post-traumatic stress disorder group and the trauma-exposed control group showed decreased amplitude of low-frequency fluctuation in the dorsal anterior cingulate cortex relative to the healthy control group. The post-traumatic stress disorder group showed increased dorsal anterior cingulate cortex functional connectivity with the right paracentral lobule and bilateral precentral gyrus/postcentral gyrus relative to both control groups. Both traumatized groups exhibited decreased dorsal anterior cingulate cortex functional connectivity with the right hippocampus and left cerebellum relative to the healthy control group. More decreased dorsal anterior cingulate cortex functional connectivity with the right hippocampus was found in the post-traumatic stress disorder group. The Checklist-Civilian Version score positively correlated with functional connectivity between the dorsal anterior cingulate cortex and the right paracentral lobule as well as between the dorsal anterior cingulate cortex and the right precentral gyrus/postcentral gyrus. The social support was associated with functional connectivity between the dorsal anterior cingulate cortex and the bilateral precentral gyrus/postcentral gyrus as well as the dorsal anterior cingulate cortex and the left middle frontal gyrus. Conclusion: Trauma exposure may result in aberrant local and network-level functional connectivity in individuals with or without post-traumatic stress disorder. Altered amplitude of low-frequency fluctuation in the dorsal anterior cingulate cortex may be a predisposing risk factor for post-traumatic stress disorder development following trauma exposure. More prominent decreased dorsal anterior cingulate cortex functional connectivity with the right hippocampus might be specific in the post-traumatic stress disorder group. Improvement of social support might possibly be significant for post-traumatic stress disorder patients.


Sign in / Sign up

Export Citation Format

Share Document