scholarly journals Gammaherpesvirus infection licenses age-associated B cells for pathogenicity in MS and EAE

2021 ◽  
Author(s):  
Isobel C. Mouat ◽  
Jessica R. Allanach ◽  
Vina Fan ◽  
Anna M. Girard ◽  
Iryna Shanina ◽  
...  

While age-associated B cells (ABCs) are known to expand and persist following viral infection and during autoimmunity, their interactions are yet to be studied together in these contexts. Epstein-Barr virus (EBV) infection has long been implicated in multiple sclerosis (MS), and it is not known whether ABCs could play a role in mediating viral contribution to autoimmunity. Here, we show that the circulating ABC population is expanded in people with MS and that EBV infection and MS status differentially impact the circulating ABC phenotype. We then directly compared ABCs during viral infection and autoimmunity using mouse models of EBV, gammaherpesvirus 68 (γHV68), and MS, experimental autoimmune encephalomyelitis (EAE). We observed that splenic ABCs are expanded in a sex-biased manner during both latent virus infection and EAE, and each event drives the ABC population to opposing phenotypes. We have previously shown that latent γHV68 infection exacerbates EAE and here we show that mice lacking ABCs fail to display γHV68-enhanced disease. Collectively, these findings indicate that latent viral infection and central nervous system autoimmunity differentially impact the ABC population and suggests that viral infections such as EBV prime ABCs to contribute pathogenically in MS.

2017 ◽  
Vol 3 (1) ◽  
pp. 205521731769018 ◽  
Author(s):  
Bert A ’t Hart ◽  
Yolanda S Kap

Infection with Epstein–Barr virus (EBV) has been associated with an enhanced risk of genetically susceptible individuals to develop multiple sclerosis (MS). However, an explanation for the contrast between the high EBV infection prevalence (60–90%) and the low MS prevalence (0.1%) eludes us. Here we propose a new concept for the EBV–MS association developed in the experimental autoimmune encephalomyelitis model in marmoset monkeys, which are naturally infected with the EBV-related γ1-herpesvirus CalHV3. The data indicate that the infection of B cells with a γ1-herpesvirus endows them with the capacity to activate auto-aggressive CD8+ T cells specific for myelin oligodendrocyte glycoprotein.


2021 ◽  
Author(s):  
Isobel C. Mouat ◽  
Iryna Shanina ◽  
Marc S. Horwitz

Age-associated B cells (ABCs; CD19+CD11c+T-bet+) are increased during an array of viral infections, though their role during viral latency is unexplored. Here, we use murine gammaherpesvirus 68 (γHV68), a homolog of Epstein-Barr virus that latently infects B cells, to demonstrate that ABCs are necessary for the effective control of gamma-herpesvirus latency. We observe that ABCs expand in the spleen during acute infection and persist at least 150 days post-infection. During acute and latent infection ABCs secrete IFNγ and TNF. Using a strain of γHV68 that is cleared following acute infection, we show that ABCs persist in the absence of latent virus, though they secrete less IFNγ and TNF. With a fluorescent virus we demonstrate that ABCs are infected with γHV68 at similar rates to other mature B cells. We find that mice without ABCs display defects in anti-viral IgG2a/c antibodies and are less able to maintain γHV68 latency when challenged with heterologous infection. Together, these results indicate that ABCs are a persistent subset during latent viral infection that controls γHV68 reactivation from latency.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Lisa Grossman ◽  
Chris Chang ◽  
Joanne Dai ◽  
Pavel A. Nikitin ◽  
Dereje D. Jima ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out. Epstein-Barr virus (EBV), an oncogenic herpesvirus, infects and transforms primary B cells into immortal lymphoblastoid cell lines (LCLs), providing a model for EBV-mediated tumorigenesis. EBV transformation stimulates robust homotypic aggregation, indicating that EBV induces molecules that mediate cell-cell adhesion. We report that EBV potently induced expression of the adhesion molecule CD226, which is not normally expressed on B cells. We found that early after infection of primary B cells, EBV promoted an increase in CD226 mRNA and protein expression. CD226 levels increased further from early proliferating EBV-positive B cells to LCLs. We found that CD226 expression on B cells was independent of B-cell activation as CpG DNA failed to induce CD226 to the extent of EBV infection. CD226 expression was high in EBV-infected B cells expressing the latency III growth program, but low in EBV-negative and EBV latency I-infected B-lymphoma cell lines. We validated this correlation by demonstrating that the latency III characteristic EBV NF-κB activator, latent membrane protein 1 (LMP1), was sufficient for CD226 upregulation and that CD226 was more highly expressed in lymphomas with increased NF-κB activity. Finally, we found that CD226 was not important for LCL steady-state growth, survival in response to apoptotic stress, homotypic aggregation, or adhesion to activated endothelial cells. These findings collectively suggest that EBV induces expression of a cell adhesion molecule on primary B cells that may play a role in the tumor microenvironment of EBV-associated B-cell malignancies or facilitate adhesion in the establishment of latency in vivo. IMPORTANCE Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out.


2004 ◽  
Vol 78 (4) ◽  
pp. 1665-1674 ◽  
Author(s):  
Takashi Nakayama ◽  
Kunio Hieshima ◽  
Daisuke Nagakubo ◽  
Emiko Sato ◽  
Masahiro Nakayama ◽  
...  

ABSTRACT Chemokines are likely to play important roles in the pathophysiology of diseases associated with Epstein-Barr virus (EBV). Here, we have analyzed the repertoire of chemokines expressed by EBV-infected B cells. EBV infection of B cells induced expression of TARC/CCL17 and MDC/CCL22, which are known to attract Th2 cells and regulatory T cells via CCR4, and also upregulated constitutive expression of MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5, which are known to attract Th1 cells and cytotoxic T cells via CCR5. Accordingly, EBV-immortalized B cells secreted these chemokines, especially CCL3, CCL4, and CCL22, in large quantities. EBV infection or stable expression of LMP1 also induced CCL17 and CCL22 in a B-cell line, BJAB. The inhibitors of the TRAF/NF-κB pathway (BAY11-7082) and the p38/ATF2 pathway (SB202190) selectively suppressed the expression of CCL17 and CCL22 in EBV-immortalized B cells and BJAB-LMP1. Consistently, transient-transfection assays using CCL22 promoter-reporter constructs demonstrated that two NF-κB sites and a single AP-1 site were involved in the activation of the CCL22 promoter by LMP1. Finally, serum CCL22 levels were significantly elevated in infectious mononucleosis. Collectively, LMP1 induces CCL17 and CCL22 in EBV-infected B cells via activation of NF-κB and probably ATF2. Production of CCL17 and CCL22, which attract Th2 and regulatory T cells, may help EBV-infected B cells evade immune surveillance by Th1 cells. However, the concomitant production of CCL3, CCL4, and CCL5 by EBV-infected B cells may eventually attract Th1 cells and cytotoxic T cells, leading to elimination of EBV-infected B cells at latency III and to selection of those with limited expression of latent genes.


Oncogene ◽  
2009 ◽  
Vol 29 (4) ◽  
pp. 503-515 ◽  
Author(s):  
S Lacoste ◽  
E Wiechec ◽  
A G dos Santos Silva ◽  
A Guffei ◽  
G Williams ◽  
...  

2021 ◽  
Vol 17 (4) ◽  
pp. e1009117
Author(s):  
Ezgi Akidil ◽  
Manuel Albanese ◽  
Alexander Buschle ◽  
Adrian Ruhle ◽  
Dagmar Pich ◽  
...  

Gene editing is now routine in all prokaryotic and metazoan cells but has not received much attention in immune cells when the CRISPR-Cas9 technology was introduced in the field of mammalian cell biology less than ten years ago. This versatile technology has been successfully adapted for gene modifications in human myeloid cells and T cells, among others, but applications to human primary B cells have been scarce and limited to activated B cells. This limitation has precluded conclusive studies into cell activation, differentiation or cell cycle control in this cell type. We report on highly efficient, simple and rapid genome engineering in primary resting human B cells using nucleofection of Cas9 ribonucleoprotein complexes, followed by EBV infection or culture on CD40 ligand feeder cells to drive in vitro B cell survival. We provide proof-of-principle of gene editing in quiescent human B cells using two model genes: CD46 and CDKN2A. The latter encodes the cell cycle regulator p16INK4a which is an important target of Epstein-Barr virus (EBV). Infection of B cells carrying a knockout of CDKN2A with wildtype and EBNA3 oncoprotein mutant strains of EBV allowed us to conclude that EBNA3C controls CDKN2A, the only barrier to B cell proliferation in EBV infected cells. Together, this approach enables efficient targeting of specific gene loci in quiescent human B cells supporting basic research as well as immunotherapeutic strategies.


2020 ◽  
Author(s):  
Tomoki Inagaki ◽  
Yoshitaka Sato ◽  
Jumpei Ito ◽  
Mitsuaki Takaki ◽  
Yusuke Okuno ◽  
...  

AbstractViral infection induces dynamic changes in transcriptional profiles. Virus-induced and anti-viral responses are intertwined during the infection. Epstein-Barr virus (EBV) is a human gammaherpesvirus that provides a model of herpesvirus latency. To measure the transcriptome changes during the establishment of EBV latency, EBV-negative Akata cells were infected with EBV-EGFP and observed by transcriptome sequencing (RNA-seq) at 0, 2, 4, 7, 10, and 14 days after infection. We found transient downregulation of mitotic division-related genes, reflecting reprograming of cell growth by EBV. Moreover, a burst of viral lytic gene expression was detected in the early phase of infection. Experimental and mathematical investigations demonstrated that infectious virions were not produced in the pre-latent phase, suggesting the presence of an abortive lytic infection. Finally, we conducted fate mapping using recombinant EBV, enabling the noninvasive, continuous observation of infected cells during EBV infection. Our tracking analysis provided direct evidence that the abortive lytic infection in the pre-latent phase converges to latent infection during EBV infection of B-cells, shedding light on novel roles of viral lytic gene(s) in establishing latency.Author summaryViral infection is a complex process that activates both virus-triggered and host anti-viral responses. This process has classically been studied by snapshot analysis such as microarray and RNA-seq at discrete time points as population averages. Snapshot data lead to invaluable findings in host-pathogen interactions. However, these “snapshot” omics, even from a single cell, lack temporal resolution. Because the behavior of infected cells is highly dynamic and heterogenous, continuous analysis is required for deciphering the fate of infected cells during viral infection. Here, we exploited fate mapping techniques with recombinant Epstein-Barr virus (EBV) to track the infected cells and recorded a log of lytic gene expression during EBV infection. Our continuous observation of infected cells revealed that EBV established latency in B-cells via an abortive lytic infection in the pre-latent phase.


Sign in / Sign up

Export Citation Format

Share Document