scholarly journals Claudin-5 binder enhances focused ultrasound-mediated opening in an in vitro blood-brain barrier model

2021 ◽  
Author(s):  
Ratneswary Sutharsan ◽  
Liyu Chen ◽  
Jonathan LF Lee ◽  
Esteban Cruz ◽  
Tishila Palliyaguru ◽  
...  

Rationale: The blood-brain barrier (BBB) while functioning as a gatekeeper of the brain, impedes cerebral drug delivery. An emerging technology to overcome this limitation is focused ultrasound (FUS). When FUS interacts with intravenously injected microbubbles (FUS+MB), the BBB opens, transiently allowing the access of therapeutic agents into the brain. However, the ultrasound parameters need to be tightly tuned: when the acoustic pressure is too low there is no opening, and when it is too high, bleeds can occur. We therefore asked whether BBB permeability can be increased by combining FUS+MB with a second modality such that in a clinical setting lower acoustic pressures could be potentially used. Methods: Given that FUS achieves BBB opening by the disruption of tight junction (TJ) proteins such as claudin-5 of brain endothelial cells, we generated a stable MDCK II cell line (eGFP-hCldn5-MDCK II) that expresses fluorescently tagged human claudin-5. Two claudin-5 binders, mC5C2 (a peptide) and cCPEm (a truncated form of an enterotoxin), that have been reported previously to weaken the barrier, were synthesized and assessed for their abilities to enhance the permeability of cellular monolayers. We then performed a comparative analysis of single and combination treatments. Results: We successfully generated a novel cell line that formed functional monolayers as validated by an increased transendothelial electrical resistance (TEER) reading and a low (< 0.2%) permeability to sodium fluorescein (376 Da). We found that the binders exerted a time- and concentration-dependent effect on BBB opening when incubated over an extended period, whereas FUS+MB caused a rapid barrier opening followed by recovery after 12 hours within the tested pressure range. Importantly, preincubation with cCPEm prior to FUS+MB treatment resulted in greater barrier opening compared to either FUS+MB or cCPEm alone as measured by reduced TEER values and an increased permeability to fluorescently labelled 40 kDa dextran (FD40). Conclusion: The data suggest that pre-incubation with clinically suitable binders to TJ proteins may be a general strategy to facilitate safer and more effective ultrasound-mediated BBB opening in cellular and animal systems and potentially also for the treatment of human diseases of the brain.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Norman A. Lapin ◽  
Kirt Gill ◽  
Bhavya R. Shah ◽  
Rajiv Chopra

Abstract The blood brain barrier (BBB) is a major obstacle to the delivery of therapeutics to the brain. Focused ultrasound (FUS) in combination with microbubbles can non-invasively open the BBB in a targeted manner. Bolus intravenous injections of microbubbles are standard practice, but dynamic influx and clearance mechanisms prevent delivery of a uniform dose with time. When multiple targets are selected for sonication in a single treatment, uniform serum concentrations of microbubbles are important for consistent BBB opening. Herein, we show that bubble infusions were able to achieve consistent BBB opening at multiple target sites. FUS exposures were conducted with different Definity microbubble concentrations at various acoustic pressures. To quantify the effects of infusion on BBB opening, we calculated the MRI contrast enhancement rate. When infusions were performed at rates of 7.2 µl microbubbles/kg/min or below, we were able to obtain consistent BBB opening without injury at all pressures. However, when infusion rates exceeded 20 µl/kg/min, signs of injury occurred at pressures from 0.39 to 0.56 MPa. When compared to bolus injections, a bubble infusion offers a more controlled and consistent approach to multi-target BBB disruption.


Theranostics ◽  
2014 ◽  
Vol 4 (10) ◽  
pp. 1014-1025 ◽  
Author(s):  
Ching-Hsiang Fan ◽  
Wun-Hao Lin ◽  
Chien-Yu Ting ◽  
Wen-Yen Chai ◽  
Tzu-Chen Yen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonios N. Pouliopoulos ◽  
Nancy Kwon ◽  
Greg Jensen ◽  
Anna Meaney ◽  
Yusuke Niimi ◽  
...  

AbstractAn emerging approach with potential in improving the treatment of neurodegenerative diseases and brain tumors is the use of focused ultrasound (FUS) to bypass the blood–brain barrier (BBB) in a non-invasive and localized manner. A large body of pre-clinical work has paved the way for the gradual clinical implementation of FUS-induced BBB opening. Even though the safety profile of FUS treatments in rodents has been extensively studied, the histological and behavioral effects of clinically relevant BBB opening in large animals are relatively understudied. Here, we examine the histological and behavioral safety profile following localized BBB opening in non-human primates (NHPs), using a neuronavigation-guided clinical system prototype. We show that FUS treatment triggers a short-lived immune response within the targeted region without exacerbating the touch accuracy or reaction time in visual-motor cognitive tasks. Our experiments were designed using a multiple-case-study approach, in order to maximize the acquired data and support translation of the FUS system into human studies. Four NHPs underwent a single session of FUS-mediated BBB opening in the prefrontal cortex. Two NHPs were treated bilaterally at different pressures, sacrificed on day 2 and 18 post-FUS, respectively, and their brains were histologically processed. In separate experiments, two NHPs that were earlier trained in a behavioral task were exposed to FUS unilaterally, and their performance was tracked for at least 3 weeks after BBB opening. An increased microglia density around blood vessels was detected on day 2, but was resolved by day 18. We also detected signs of enhanced immature neuron presence within areas that underwent BBB opening, compared to regions with an intact BBB, confirming previous rodent studies. Logistic regression analysis showed that the NHP cognitive performance did not deteriorate following BBB opening. These preliminary results demonstrate that neuronavigation-guided FUS with a single-element transducer is a non-invasive method capable of reversibly opening the BBB, without substantial histological or behavioral impact in an animal model closely resembling humans. Future work should confirm the observations of this multiple-case-study work across animals, species and tasks.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
So Hee Park ◽  
Kyoungwon Baik ◽  
Seun Jeon ◽  
Won Seok Chang ◽  
Byoung Seok Ye ◽  
...  

Abstract Background Focused ultrasound (FUS)-mediated blood–brain barrier (BBB) opening has shown efficacy in removal of amyloid plaque and improvement of cognitive functions in preclinical studies, but this is rarely reported in clinical studies. This study was conducted to evaluate the safety, feasibility and potential benefits of repeated extensive BBB opening. Methods In this open-label, prospective study, six patients with Alzheimer’s disease (AD) were enrolled at Severance Hospital in Korea between August 2020 and September 2020. Five of them completed the study. FUS-mediated BBB opening, targeting the bilateral frontal lobe regions over 20 cm3, was performed twice at three-month intervals. Magnetic resonance imaging, 18F-Florbetaben (FBB) positron emission tomography, Caregiver-Administered Neuropsychiatric Inventory (CGA-NPI) and comprehensive neuropsychological tests were performed before and after the procedures. Results FUS targeted a mean volume of 21.1 ± 2.7 cm3 and BBB opening was confirmed at 95.7% ± 9.4% of the targeted volume. The frontal-to-other cortical region FBB standardized uptake value ratio at 3 months after the procedure showed a slight decrease, which was statistically significant, compared to the pre-procedure value (− 1.6%, 0.986 vs1.002, P = 0.043). The CGA-NPI score at 2 weeks after the second procedure significantly decreased compared to baseline (2.2 ± 3.0 vs 8.6 ± 6.0, P = 0.042), but recovered after 3 months (5.2 ± 5.8 vs 8.6 ± 6.0, P = 0.89). No adverse effects were observed. Conclusions The repeated and extensive BBB opening in the frontal lobe is safe and feasible for patients with AD. In addition, the BBB opening is potentially beneficial for amyloid removal in AD patients.


2021 ◽  
Vol 150 (4) ◽  
pp. A29-A30
Author(s):  
Yaoheng Yang ◽  
Christopher P. Pacia ◽  
Dezhuang Ye ◽  
Yimei Yue ◽  
Chih-Yen Chien ◽  
...  

2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii12-ii12
Author(s):  
Michiharu Yoshida ◽  
Kazuo Maruyama ◽  
Yasutaka Kato ◽  
Rachmilevitch Itay ◽  
Syuji Suzuki ◽  
...  

Abstract OBJECTIVE In neuro-oncology, it is believed that one major obstacle to effective chemotherapy is the high vascularity and heterogenous permeability of brain tumors. Focused ultrasound (FUS) exposure with the microbubbles has been shown to transiently open the blood-brain barrier (BBB) without depositing thermal energy, and thus may enhance the delivery of various therapeutic drugs into brain tumors. The aim of this study was to evaluate the BBB opening using 220-kHz transcranial MRI-guided FUS (TcMRgFUS) device and microbubbles in mouse and rat. METHODS The experiments were performed with the 220-kHz ExAblate Neuro TcMRgFUS system (InSightec) and novel lipid bubbles (LB, Teikyo Univ.). Normal mouse and rat brains were irradiated with TcMRgFUS (output power, 5W; duration of irradiation, 30 s; duty cycle 100%) following intravenous injection of 6x107 LB per mouse and rat, respectively. On irradiation, target temperature rise & cavitation signal were monitored by MR thermometry and cavitation receiver, respectively. Immediately after irradiation, BBB opening and complications were detected based on T1, T2, T2*, and Gadolinium (Gd) enhanced T1-weighted images. RESULTS The maximum temperature of brain tissue was under 42 C. There were no risky-cavitation signals causing hemorrhage. The FUS-LB exposure induced successful BBB opening effect in both mouse and rat, confirmed by Gd enhancement in the target region, lateral ventricles, and sulcus. In addition, there were no complications such as edema, coagulation, and hemorrhage. CONCLUSIONS Although there remain many conditions to be optimized, BBB opening using a 220-kHz TcMRgFUS device and LB can offer a non-invasive and feasible drug delivery for brain malignancies.


Sign in / Sign up

Export Citation Format

Share Document