scholarly journals OPAM, an Open source, 3D printed Low-cost Micro-Manipulator for Single Cell Manipulation

2021 ◽  
Author(s):  
Jiang Xu ◽  
Zhuowei Du ◽  
Paul Hsi Liu ◽  
Yi Kou ◽  
Lin Chen

We introduce OPAM, an Open source, low-cost (under $150), 3D-Printed, stepper motor driven, Arduino based, single cell Micromanipulator (OPAM). Modification of a commercial stepper motor led to dramatically increased stability and maneuverability of the motor, based on which the micromanipulator was designed. All components of this micromanipulator can be 3D printed using an entry-level 3D printer and assembled with ease. With this single cell manipulator, successful targeted single cell capture and transfer was confirmed under the microscope, which showed great promise for single cell related experiments.

Author(s):  
A. Elibiary ◽  
W. Oakey ◽  
S. Jun ◽  
B. Sanz-Izquierdo ◽  
D. Bird ◽  
...  

2019 ◽  
Vol 9 (4) ◽  
pp. 708 ◽  
Author(s):  
Francesco Osti ◽  
Gian Santi ◽  
Marco Neri ◽  
Alfredo Liverani ◽  
Leonardo Frizziero ◽  
...  

This paper presents the application of a low-cost 3D printing technology in pre-operative planning and intra-operative decision-making. Starting from Computed Tomography (CT) scans, we were able to reconstruct a 3D model of the area of interest with a very simple and rapid workflow, using open-source software and an entry level 3D printer. The use of High Temperature Poly-Lactic Acid (HTPLA) by ProtoPasta allowed fabricating sterilizable models, which could be used within the surgical field. We believe that our method is an appealing alternative to high-end commercial products, being superior for cost and speed of production. It could be advantageous especially for small and less affluent hospitals that could produce customized sterilizable tools with little investment and high versatility.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 572
Author(s):  
Mads Jochumsen ◽  
Taha Al Muhammadee Janjua ◽  
Juan Carlos Arceo ◽  
Jimmy Lauber ◽  
Emilie Simoneau Buessinger ◽  
...  

Brain-computer interfaces (BCIs) have been proven to be useful for stroke rehabilitation, but there are a number of factors that impede the use of this technology in rehabilitation clinics and in home-use, the major factors including the usability and costs of the BCI system. The aims of this study were to develop a cheap 3D-printed wrist exoskeleton that can be controlled by a cheap open source BCI (OpenViBE), and to determine if training with such a setup could induce neural plasticity. Eleven healthy volunteers imagined wrist extensions, which were detected from single-trial electroencephalography (EEG), and in response to this, the wrist exoskeleton replicated the intended movement. Motor-evoked potentials (MEPs) elicited using transcranial magnetic stimulation were measured before, immediately after, and 30 min after BCI training with the exoskeleton. The BCI system had a true positive rate of 86 ± 12% with 1.20 ± 0.57 false detections per minute. Compared to the measurement before the BCI training, the MEPs increased by 35 ± 60% immediately after and 67 ± 60% 30 min after the BCI training. There was no association between the BCI performance and the induction of plasticity. In conclusion, it is possible to detect imaginary movements using an open-source BCI setup and control a cheap 3D-printed exoskeleton that when combined with the BCI can induce neural plasticity. These findings may promote the availability of BCI technology for rehabilitation clinics and home-use. However, the usability must be improved, and further tests are needed with stroke patients.


2018 ◽  
Vol 65 (5) ◽  
pp. 412-419 ◽  
Author(s):  
Claudia R. Cutler ◽  
Anita L. Hamilton ◽  
Emma Hough ◽  
Cheyenne M. Baines ◽  
Ross A. Clark

Author(s):  
Alejandro Bonnet De León ◽  
Jose Luis Saorin ◽  
Jorge De la Torre-Cantero ◽  
Cecile Meier ◽  
María Cabrera-Pardo

<p class="0abstract"><span lang="EN-US">One of the drawbacks of using 3D printers in educational environments is that the creation time of each piece is high and therefore it is difficult to manufacture at least one piece for each student. This aspect is important so that each student can feel part of the manufacturing process. To achieve this, 3D printers can be used, not to make pieces, but to make the molds that students use to create replicas. On the other hand, for a mold to be used to make several pieces, it is convenient to make it with flexible material. However, most used material for 3D printers (PLA) is very rigid. To solve this problem, this article designs a methodology that allows the use of low-cost 3D printers (most common in school environments) with flexible material so that each mold can be used to manufacture parts for several students. To print flexible material with low-cost printers, it is necessary to adapt the machine and the print parameters to work properly. This article analyzes the changes to be made with a low cost 3D printer and validates the use of molds in school environments. A pilot test has been carried out with 8 students of the subject of Typography, in the School of Art and Superior of Design of Tenerife. During the activity, the students carried out the process of designing a typography and creating digital molds for 3D printing with flexible material. The designs were made using free 3D modeling programs and low-cost technologies.</span></p>


2020 ◽  
Author(s):  
Matthew Wincott ◽  
Andrew Jefferson ◽  
Ian M. Dobbie ◽  
Martin J. Booth ◽  
Ilan Davis ◽  
...  

ABSTRACTCommercial fluorescence microscope stands and fully automated XYZt fluorescence imaging systems are generally beyond the limited budgets available for teaching and outreach. We have addressed this problem by developing “Microscopi”, an accessible, affordable, DIY automated imaging system that is built from 3D printed and commodity off-the-shelf hardware, including electro-mechanical, computer and optical components. Our design features automated sample navigation and image capture with a simple web-based graphical user interface, accessible with a tablet or other mobile device. The light path can easily be switched between different imaging modalities. The open source Python-based control software allows the hardware to be driven as an integrated imaging system. Furthermore, the microscope is fully customisable, which also enhances its value as a learning tool. Here, we describe the basic design and demonstrate imaging performance for a range of easily sourced specimens.HighlightsPortable, low cost, self-build from 3D printed and commodity componentsMultimodal imaging: bright field, dark field, pseudo-phase and fluorescenceAutomated XYZt imaging from a tablet or smartphone via a simple GUIWide ranging applications in teaching, outreach and fieldworkOpen source hardware and software design, allowing user modification


10.2196/19792 ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. e19792
Author(s):  
Michelle Ho ◽  
Jared Goldfarb ◽  
Roxana Moayer ◽  
Uche Nwagu ◽  
Rohan Ganti ◽  
...  

Background Nasal osteotomy is a commonly performed procedure during rhinoplasty for both functional and cosmetic reasons. Teaching and learning this procedure proves difficult due to the reliance on nuanced tactile feedback. For surgical simulation, trainees are traditionally limited to cadaveric bones, which can be costly and difficult to obtain. Objective This study aimed to design and print a low-cost midface model for nasal osteotomy simulation. Methods A 3D reconstruction of the midface was modified using the free open-source design software Meshmixer (Autodesk Inc). The pyriform aperture was smoothed, and support rods were added to hold the fragments generated from the simulation in place. Several models with various infill densities were printed using a desktop 3D printer to determine which model best mimicked human facial bone. Results A midface simulation set was designed using a desktop 3D printer, polylactic acid filament, and easily accessible tools. A nasal osteotomy procedure was successfully simulated using the model. Conclusions 3D printing is a low-cost, accessible technology that can be used to create simulation models. With growing restrictions on trainee duty hours, the simulation set can be used by programs to augment surgical training.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2144
Author(s):  
Maria Sevastaki ◽  
Mirela Petruta Suchea ◽  
George Kenanakis

In the present work, the use of nanocomposite polymeric filaments based on 100% recycled solid polystyrene everyday products, enriched with TiO2 nanoparticles with mass concentrations up to 40% w/w, and the production of 3D photocatalytic structures using a typical fused deposition modeling (FDM)-type 3D printer are reported. We provide evidence that the fabricated 3D structures offer promising photocatalytic properties, indicating that the proposed technique is indeed a novel low-cost alternative route for fabricating large-scale photocatalysts, suitable for practical real-life applications.


Sign in / Sign up

Export Citation Format

Share Document