scholarly journals CT Conversion Workflow for Intraoperative Usage of Bony Models: From DICOM Data to 3D Printed Models

2019 ◽  
Vol 9 (4) ◽  
pp. 708 ◽  
Author(s):  
Francesco Osti ◽  
Gian Santi ◽  
Marco Neri ◽  
Alfredo Liverani ◽  
Leonardo Frizziero ◽  
...  

This paper presents the application of a low-cost 3D printing technology in pre-operative planning and intra-operative decision-making. Starting from Computed Tomography (CT) scans, we were able to reconstruct a 3D model of the area of interest with a very simple and rapid workflow, using open-source software and an entry level 3D printer. The use of High Temperature Poly-Lactic Acid (HTPLA) by ProtoPasta allowed fabricating sterilizable models, which could be used within the surgical field. We believe that our method is an appealing alternative to high-end commercial products, being superior for cost and speed of production. It could be advantageous especially for small and less affluent hospitals that could produce customized sterilizable tools with little investment and high versatility.

2021 ◽  
Author(s):  
Jiang Xu ◽  
Zhuowei Du ◽  
Paul Hsi Liu ◽  
Yi Kou ◽  
Lin Chen

We introduce OPAM, an Open source, low-cost (under $150), 3D-Printed, stepper motor driven, Arduino based, single cell Micromanipulator (OPAM). Modification of a commercial stepper motor led to dramatically increased stability and maneuverability of the motor, based on which the micromanipulator was designed. All components of this micromanipulator can be 3D printed using an entry-level 3D printer and assembled with ease. With this single cell manipulator, successful targeted single cell capture and transfer was confirmed under the microscope, which showed great promise for single cell related experiments.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1456
Author(s):  
Rifky Ismail ◽  
Rilo Berdin Taqriban ◽  
Mochammad Ariyanto ◽  
Ali Tri Atmaja ◽  
Sugiyanto ◽  
...  

This study aims to invent a new, low-cost, and faster method of prosthetic socket fabrication, especially in Indonesia. In this paper, the photogrammetry with the 3D printing method is introduced as the new applicative way for transradial prosthetic making. Photogrammetry is used to retrieve a 3D model of the amputated hand stump using a digital camera. A digital camera is used for photogrammetry technique and the resulting 3D model is printed using a circular 3D printer with Polylactic acid (PLA) material. The conventional casting socket fabrication method was also conducted in this study as a comparison. Both prosthetic sockets were analyzed for usability, and sectional area conformities to determine the size deviation using the image processing method. This study concludes that the manufacturing of transradial prosthetic sockets incorporating the photogrammetry technique reduces the total man-hour production. Based on the results, it can be implied that the photogrammetry technique is a more efficient and economical method compared to the conventional casting method. The 3D printed socket resulting from the photogrammetry method has a 5–19% area deviation to the casting socket but it is still preferable and adjustable for the transradial amputee when applied to the stump of the remaining hand.


Author(s):  
Alejandro Bonnet De León ◽  
Jose Luis Saorin ◽  
Jorge De la Torre-Cantero ◽  
Cecile Meier ◽  
María Cabrera-Pardo

<p class="0abstract"><span lang="EN-US">One of the drawbacks of using 3D printers in educational environments is that the creation time of each piece is high and therefore it is difficult to manufacture at least one piece for each student. This aspect is important so that each student can feel part of the manufacturing process. To achieve this, 3D printers can be used, not to make pieces, but to make the molds that students use to create replicas. On the other hand, for a mold to be used to make several pieces, it is convenient to make it with flexible material. However, most used material for 3D printers (PLA) is very rigid. To solve this problem, this article designs a methodology that allows the use of low-cost 3D printers (most common in school environments) with flexible material so that each mold can be used to manufacture parts for several students. To print flexible material with low-cost printers, it is necessary to adapt the machine and the print parameters to work properly. This article analyzes the changes to be made with a low cost 3D printer and validates the use of molds in school environments. A pilot test has been carried out with 8 students of the subject of Typography, in the School of Art and Superior of Design of Tenerife. During the activity, the students carried out the process of designing a typography and creating digital molds for 3D printing with flexible material. The designs were made using free 3D modeling programs and low-cost technologies.</span></p>


Author(s):  
A. Elibiary ◽  
W. Oakey ◽  
S. Jun ◽  
B. Sanz-Izquierdo ◽  
D. Bird ◽  
...  

10.2196/19792 ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. e19792
Author(s):  
Michelle Ho ◽  
Jared Goldfarb ◽  
Roxana Moayer ◽  
Uche Nwagu ◽  
Rohan Ganti ◽  
...  

Background Nasal osteotomy is a commonly performed procedure during rhinoplasty for both functional and cosmetic reasons. Teaching and learning this procedure proves difficult due to the reliance on nuanced tactile feedback. For surgical simulation, trainees are traditionally limited to cadaveric bones, which can be costly and difficult to obtain. Objective This study aimed to design and print a low-cost midface model for nasal osteotomy simulation. Methods A 3D reconstruction of the midface was modified using the free open-source design software Meshmixer (Autodesk Inc). The pyriform aperture was smoothed, and support rods were added to hold the fragments generated from the simulation in place. Several models with various infill densities were printed using a desktop 3D printer to determine which model best mimicked human facial bone. Results A midface simulation set was designed using a desktop 3D printer, polylactic acid filament, and easily accessible tools. A nasal osteotomy procedure was successfully simulated using the model. Conclusions 3D printing is a low-cost, accessible technology that can be used to create simulation models. With growing restrictions on trainee duty hours, the simulation set can be used by programs to augment surgical training.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2144
Author(s):  
Maria Sevastaki ◽  
Mirela Petruta Suchea ◽  
George Kenanakis

In the present work, the use of nanocomposite polymeric filaments based on 100% recycled solid polystyrene everyday products, enriched with TiO2 nanoparticles with mass concentrations up to 40% w/w, and the production of 3D photocatalytic structures using a typical fused deposition modeling (FDM)-type 3D printer are reported. We provide evidence that the fabricated 3D structures offer promising photocatalytic properties, indicating that the proposed technique is indeed a novel low-cost alternative route for fabricating large-scale photocatalysts, suitable for practical real-life applications.


2020 ◽  
Author(s):  
Noran Mohamed Hesham ◽  
Hossam Kandel ◽  
Iman Ismail Dakhli

Abstract Article Type : Research article Corrective and reconstructive cranio-maxillofacial interventions are a challenging area of surgery that requires careful pre-operative planning. To accommodate the need for precision pre-operative planning, surgeons frequently need guidance such as a 3D model to display complex cranial structures. 3D model is a manufactured model made by a 3D printer using digital imaging and communication for medicine (DICOM) data from a CT scan, and then, converted into computer-assisted design (CAD) data. Image acquisition is a very important step in generation of 3D objects as the quality of the object depends on the quality of the data. MSCT is widely applied for rapid prototyping because image post-processing is less complex for MSCT data.This aim of the present study is to evaluate the dimensional accuracy of the 3D printed mandibular models fabricated by two different additive manufacturing techniques using highly precise one as selective laser sintering (SLS) and low-cost one as fused filament fabrication and whether they are both comparable in terms of precision.In this diagnostic accuracy study , 7 mandibular models will be recruited for the study, 10 linear measurements will be determined on the models. MSCT scanning of the model will be performed. afterwards 3d printing of the scanned image will be done using SLS and FFF 3d printers. the predetermined 10 linear measurement will be measured on the printed models to be compared with the reference standard measurement to determine the accuracy of the 3d printers in dental applications like surgical guides, orthodontic appliances, fixed prosthodontics appliances and other many dental applications. The study is scheduled to be done by october 2020Article Type : Protocol for diagnostic accuracy study


2020 ◽  
Author(s):  
Michelle Ho ◽  
Jared Goldfarb ◽  
Roxana Moayer ◽  
Uche Nwagu ◽  
Rohan Ganti ◽  
...  

BACKGROUND Nasal osteotomy is a commonly performed procedure during rhinoplasty for both functional and cosmetic reasons. Teaching and learning this procedure proves difficult due to the reliance on nuanced tactile feedback. For surgical simulation, trainees are traditionally limited to cadaveric bones, which can be costly and difficult to obtain. OBJECTIVE This study aimed to design and print a low-cost midface model for nasal osteotomy simulation. METHODS A 3D reconstruction of the midface was modified using the free open-source design software Meshmixer (Autodesk Inc). The pyriform aperture was smoothed, and support rods were added to hold the fragments generated from the simulation in place. Several models with various infill densities were printed using a desktop 3D printer to determine which model best mimicked human facial bone. RESULTS A midface simulation set was designed using a desktop 3D printer, polylactic acid filament, and easily accessible tools. A nasal osteotomy procedure was successfully simulated using the model. CONCLUSIONS 3D printing is a low-cost, accessible technology that can be used to create simulation models. With growing restrictions on trainee duty hours, the simulation set can be used by programs to augment surgical training.


2019 ◽  
Vol 3 (2) ◽  

Experimental design has been used to determine outlying factors that affect tensile strength of fused deposition modelling 3D printed PLA parts. A two level, three factor full factorial experiments were utilized to determine the best combination of factors that yielded the highest tensile strength of PLA tensile dog bones manufactured in accordance with ASTM D638-14. PLA is particularly desirable due to its environmental friendliness, biodegradability, low cost, and low melting point, allowing it to be built on a non-heated platform without risk of toxic fumes. Increasing the tensile strength of PLA will allow PLA to be used in a wider range of applications that demand stronger plastic parts. The chosen factors were infill percentage, nozzle temperature, and printing speed. The tensile strength was affected by all factors and combinations except for high levels of infill percentage, nozzle temperature, and printing speed combined.


Author(s):  
G. Vacca ◽  
G. Furfaro ◽  
A. Dessì

<p><strong>Abstract.</strong> The growing interest in recent years in Unmanned Aerial Vehicles (UAVs) by the scientific community, software developers, and geomatics professionals, has led these systems to be used more and more widely, in different fields of engineering and architecture. This is thanks, above all, to their flexibility of use and low cost compared to traditional photogrammetric flights using expensive metric digital cameras or LiDAR sensors. In recent years, UAVs have also been used in the field of monitoring and inspection of public or private buildings that are remarkable in terms of size and architecture. This is mainly due to the focus a sustainability and resource efficiency in the building and infrastructure sector, which aims to extend their lifetimes. Through the use of remote checking using UAVs, the monitoring and inspection of buildings can be brought to a new level of quality and saving.</p><p> This paper focuses on the processing and study of 3D models obtained from images captured by an UAV. In particular, the authors wanted to study the accuracy gains achieved in the building 3D model obtained with both nadir and oblique UAV flights. The images from the flights were processed using Structure-for Motion-based approach for point cloud generation using dense image-matching algorithms implemented in an open source software. We used the open source software VisualSfM, developed by Chanchang Wu in collaboration with the University of Washington and Google. The dense matching plug-in integrated in its interface, PMVS/CMVS, made by Yasutaka Furukawa, was employed to generate the dense cloud. The achieved results were compare with those gained by Photoscan software by Agisoft and with 3D model from the Terrestrial Laser Scanner (TLS) survey.</p>


Sign in / Sign up

Export Citation Format

Share Document