scholarly journals Antibodies control metabolism by regulating insulin homeostasis

2021 ◽  
Author(s):  
Timm Amendt ◽  
Gabriele Allies ◽  
Antonella Nicolo ◽  
Omar El Ayoubi ◽  
Marc Young ◽  
...  

Homeostasis of metabolism by hormone production is crucial to maintain physiological integrity and disbalance can cause severe metabolic disorders such as diabetes mellitus. Here, we show that antibodies recognizing insulin are key regulators of blood glucose and metabolism controlling insulin concentrations. In fact, antibody-deficient mice and immunodeficiency patients show sub-physiological blood glucose, which becomes normal after total IgG injection. We show that insulin-specific IgG antibodies found in the serum of wildtype mice or healthy individuals are responsible for this regulation. Interestingly, we identify two fractions of anti-insulin IgM which differ in their affinity to insulin. The low affinity IgM fraction (anti-insulin IgMlow) neutralizes insulin and leads to increased blood glucose while the high affinity IgM fraction (anti-insulin IgMhigh) protects insulin from neutralization by anti-insulin IgG thereby preventing blood glucose dysregulation. In contrast to anti-insulin IgMhigh, anti-insulin IgMlow binds to dsDNA suggesting that it is multi-specific. This multi-specificity mediates the formation of larger immune complexes containing insulin which results in increased uptake and degradation of insulin by macrophages in the presence of anti-insulin IgMlow as compared to anti-insulin IgMhigh. To demonstrate that high affinity anti-insulin IgM acts as protector of insulin and counteracts insulin neutralization by anti-insulin IgG, we expressed the variable regions of the same anti-insulin antibody as IgG or IgM. Strikingly, only the anti-insulin IgM regulated insulin function and prevented IgG-mediated neutralization of insulin and subsequent blood glucose dysregulation. Since anti-insulin IgMhigh is generated in the course of an immune response and affinity maturation, its protective role suggests that preventing autoimmune damage and maintaining physiological homeostasis requires adaptive tolerance mechanisms that generate protective IgM antibodies during memory responses.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Francesco Nannini ◽  
Farhaan Parekh ◽  
Patrycja Wawrzyniecka ◽  
Leila Mekkaoui ◽  
Matteo Righi ◽  
...  

Abstract Antibody phage display is a powerful platform for discovery of clinically applicable high affinity monoclonal antibodies against a broad range of targets. Libraries generated from immunized animals offer the advantage of in vivo affinity-maturation of V regions prior to library generation. Despite advantages, few studies have described isolation of antibodies from rats using immune phage display. In our study, we describe a novel primer set, covering the full rat heavy chain variable and kappa light chain variable regions repertoire for the generation of an unbiased immune libraries. Since the immune repertoire of rats is poorly understood, we first performed a deep sequencing analysis of the V(D)J regions of VH and VLK genes, demonstrating the high abundance of IGVH2 and IGVH5 families for VH and IGVLK12 and IGVLK22 for VLK. The comparison of gene’s family usage in naïve rats have been used to validate the frequency’s distribution of the primer set, confirming the absence of PCR-based biases. The primers were used to generate and assemble a phage display library from human CD160-vaccinated rats. CD160 represents a valid therapeutic target as it has been shown to be expressed on chronic lymphocytic leukaemia cells and on the surface of newly formed vessels. We utilised a novel phage display panning strategy to isolate a high affinity pool (KD range: 0.399–233 nM) of CD160 targeting monoclonal antibodies. Subsequently, identified binders were tested for function as third generation Chimeric Antigen Receptors (CAR) T cells demonstrating specific cytolytic activity. Our novel primer set coupled with a streamlined strategy for phage display panning enable the rapid isolation and identification of high affinity antibodies from immunised rats. The therapeutic utility of these antibodies was demonstrated in CAR format.


Author(s):  
Veda Sheersh Boorla ◽  
Ratul Chowdhury ◽  
Costas D. Maranas

AbstractThe emergence of SARS-CoV-2 is responsible for the pandemic of respiratory disease known as COVID-19, which emerged in the city of Wuhan, Hubei province, China in late 2019. Both vaccines and targeted therapeutics for treatment of this disease are currently lacking. Viral entry requires binding of the viral spike receptor binding domain (RBD) with the human angiotensin converting enzyme (hACE2). In an earlier paper1, we report on the specific residue interactions underpinning this event. Here we report on the de novo computational design of high affinity antibody variable regions through the recombination of VDJ genes targeting the most solvent-exposed hACE2-binding residues of the SARS-CoV-2 spike protein using the software tool OptMAVEn-2.02. Subsequently, we carry out computational affinity maturation of the designed prototype variable regions through point mutations for improved binding with the target epitope. Immunogenicity was restricted by preferring designs that match sequences from a 9-mer library of “human antibodies” based on H-score (human string content, HSC)3. We generated 106 different designs and report in detail on the top five that trade-off the greatest affinity for the spike RBD epitope (quantified using the Rosetta binding energies) with low H-scores. By grafting the designed Heavy (VH) and Light (VL) chain variable regions onto a human framework (Fc), high-affinity and potentially neutralizing full-length monoclonal antibodies (mAb) can be constructed. Having a potent antibody that can recognize the viral spike protein with high affinity would be enabling for both the design of sensitive SARS-CoV-2 detection devices and for their deployment as therapeutic antibodies.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 145
Author(s):  
Leonardo Cristinziano ◽  
Remo Poto ◽  
Gjada Criscuolo ◽  
Anne Lise Ferrara ◽  
Maria Rosaria Galdiero ◽  
...  

Human lung mast cells (HLMCs) express the high-affinity receptor FcεRI for IgE and are strategically located in different compartments of human lung, where they play a role in several inflammatory disorders and cancer. Immunoglobulin superantigens (e.g., protein A of Staphylococcus aureus and protein L of Peptostreptococcus magnus) bind to the variable regions of either the heavy (VH3) or light chain (κ) of IgE. IL-33 is a cytokine expressed by epithelial cells that exerts pleiotropic functions in the lung. The present study investigated whether immunoglobulin superantigens protein A and protein L and IL-33 caused the release of inflammatory (histamine), angiogenic (VEGF-A) and lymphangiogenic (VEGF-C) factors from HLMCs. The results show that protein A and protein L induced the rapid (30 min) release of preformed histamine from HLMCs. By contrast, IL-33 did not induce the release of histamine from lung mast cells. Prolonged incubation (12 h) of HLMCs with superantigens and IL-33 induced the release of VEGF-A and VEGF-C. Preincubation with IL-33 potentiated the superantigenic release of histamine, angiogenic and lymphangiogenic factors from HLMCs. Our results suggest that IL-33 might enhance the inflammatory, angiogenic and lymphangiogenic activities of lung mast cells in pulmonary disorders.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 516
Author(s):  
Shuyi Yang ◽  
Keith R. Jerome ◽  
Alexander L. Greninger ◽  
Joshua T. Schiffer ◽  
Ashish Goyal

While SARS-CoV-2 specific neutralizing antibodies have been developed for therapeutic purposes, the specific viral triggers that drive the generation of SARS-CoV-2 specific IgG and IgM antibodies remain only partially characterized. Moreover, it is unknown whether endogenously derived antibodies drive viral clearance that might result in mitigation of clinical severity during natural infection. We developed a series of non-linear mathematical models to investigate whether SARS-CoV-2 viral and antibody kinetics are coupled or governed by separate processes. Patients with severe disease had a higher production rate of IgG but not IgM antibodies. Maximal levels of both isotypes were governed by their production rate rather than different saturation levels between people. Our results suggest that an exponential surge in IgG levels occurs approximately 5–10 days after symptom onset with no requirement for continual antigenic stimulation. SARS-CoV-2 specific IgG antibodies appear to have limited to no effect on viral dynamics but may enhance viral clearance late during primary infection resulting from the binding effect of antibody to virus, rather than neutralization. In conclusion, SARS-CoV-2 specific IgG antibodies may play only a limited role in clearing infection from the nasal passages despite providing long-term immunity against infection following vaccination or prior infection.


2017 ◽  
Vol 78 ◽  
pp. 175
Author(s):  
Rex Friedlander ◽  
Essa Abuhelaiqa ◽  
Prabhakar Putheti ◽  
Arvind K. Menon ◽  
Vijay K. Sharma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document