scholarly journals Integrated single-cell analysis of enteric glial cells reveals a molecular basis for postnatal neurogenesis and its therapeutic application

2021 ◽  
Author(s):  
Richard A Guyer ◽  
Sukhada Bhave ◽  
Rhian Stavely ◽  
Ryo Hotta ◽  
Nicole Bousquet ◽  
...  

Traditional models posit that enteric neurons and glial cells represent distinct terminal lineages derived from a common neural crest precursor. This model, however, does not explain the neurogenic capability of murine postnatal enteric glial cells. To characterize the full diversity of myenteric glial cells and identify a basis for the glial-to-neuronal transition, which we demonstrate using a two-marker system, we applied single-cell RNA sequencing and single-nucleus ATAC sequencing to generate a multiomic atlas of Plp1-expressing glial cells from the small intestine of adolescent mice. We identify nine transcriptionally distinct subpopulations of enteric glial cells, including cells expressing both canonical neural stem cell genes and enteric neuronal transcriptional factors. We refer to these Plp1-positive cells with neural stem cell features as glial neuroblasts. Surprisingly, most glial cells maintain open chromatin at neuronal-associated loci, suggesting enteric glia are primed for neuronal transition. Comparison with the developing embryonic enteric nervous system shows postnatal glial cells maintain a transcriptional program closely matching embryonic neuronal progenitors. Transcription factor motif enrichment analysis and regulon analysis implicate AP-1 transcription factors in maintaining the glial neuroblast gene program. Three-dimensional cultures of postnatal enteric nervous system cells, which are enriched for glial neuroblasts and provide a niche for neuronal development, recapitulate the transcriptional changes seen during embryonic enteric neurogenesis. snATAC analysis shows chromatin closing consistent with terminal differentiation as glial cells become neurons in three-dimensional culture. In conclusion, postnatal myenteric glial cells include a neuroblast population and maintain a chromatin structure primed for neuronal fate acquisition.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Timna Inlender ◽  
Einat Nissim-Eliraz ◽  
Rhian Stavely ◽  
Ryo Hotta ◽  
Allan M. Goldstein ◽  
...  

AbstractIn mammals, neural crest cells populate the gut and form the enteric nervous system (ENS) early in embryogenesis. Although the basic ENS structure is highly conserved across species, we show important differences between mice and humans relating to the prenatal and postnatal development of mucosal enteric glial cells (mEGC), which are essential ENS components. We confirm previous work showing that in the mouse mEGCs are absent at birth, and that their appearance and homeostasis depends on postnatal colonization by microbiota. In humans, by contrast, a network of glial cells is already present in the fetal gut. Moreover, in xenografts of human fetal gut maintained for months in immuno-compromised mice, mEGCs persist following treatment with antibiotics that lead to the disappearance of mEGCs from the gut of the murine host. Single cell RNAseq indicates that human and mouse mEGCs differ not only in their developmental dynamics, but also in their patterns of gene expression.


Author(s):  
Werend Boesmans ◽  
Amelia Nash ◽  
Kinga R. Tasnády ◽  
Wendy Yang ◽  
Lincon A. Stamp ◽  
...  

Enteric glia are a fascinating population of cells. Initially identified in the gut wall as the “support” cells of the enteric nervous system, studies over the past 20 years have unveiled a vast array of functions carried out by enteric glia. They mediate enteric nervous system signalling and play a vital role in the local regulation of gut functions. Enteric glial cells interact with other gastrointestinal cell types such as those of the epithelium and immune system to preserve homeostasis, and are perceptive to luminal content. Their functional versatility and phenotypic heterogeneity are mirrored by an extensive level of plasticity, illustrated by their reactivity in conditions associated with enteric nervous system dysfunction and disease. As one of the hallmarks of their plasticity and extending their operative relationship with enteric neurons, enteric glia also display neurogenic potential. In this review, we focus on the development of enteric glial cells, and the mechanisms behind their heterogeneity in the adult gut. In addition, we discuss what is currently known about the role of enteric glia as neural precursors in the enteric nervous system.


Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 59-74 ◽  
Author(s):  
P. F. Copenhaver

The enteric nervous system (ENS) of the moth, Manduca sexta, consists of two primary cellular domains and their associated nerves. The neurons of the anterior domain occupy two small peripheral ganglia (the frontal and hypocerebral ganglia), while a second population of neurons occupies a branching nerve plexus (the enteric plexus) that spans the foregut-midgut boundary. Previously, we have shown these two regions arise by separate programs of neurogenesis: cells that form the anterior enteric ganglia are generated from three discrete proliferative zones that differentiate within the foregut epithelium. In contrast, the cells of the enteric plexus (the EP cells) emerge from a neurogenic placode within the posterior lip of the foregut. Both sets of neurons subsequently undergo an extended period of migration and reorganization to achieve their mature distributions. We now show that prior to the completion of neurogenesis, an additional class of precursor cells is generated from the three proliferative zones of the foregut. Coincident with the onset of neuronal migration, this precursor class enters a phase of enhanced mitotic activity, giving rise to a population of cells that continue to divide as the ENS matures. Using clonal analyses of individual precursors, we demonstrate that the progeny of these cells become distributed along the same pathways taken by the migratory neurons; subsequently, they contribute to an ensheathing layer around the branches of the enteric plexus and the enteric ganglia. We conclude that this additional precursor class, which shares a common developmental origin with the enteric neurons, gives rise to a distinct population of peripheral glial cells. Moreover, the distribution of enteric glial cells is achieved by their migration and differentiation along the same pathways that are formed during the preceding phases of neuronal migration.


2001 ◽  
Vol 280 (6) ◽  
pp. G1163-G1171 ◽  
Author(s):  
A. Rühl ◽  
S. Franzke ◽  
S. M. Collins ◽  
W. Stremmel

As yet, little is known about the function of the glia of the enteric nervous system (ENS), particularly in an immune-stimulated environment. This prompted us to study the potential of cultured enteroglial cells for cytokine synthesis and secretion. Jejunal myenteric plexus preparations from adult rats were enzymatically dissociated, and enteroglial cells were purified by complement-mediated cytolysis and grown in tissue culture. Cultured cells were stimulated with recombinant rat interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, and IL-6 mRNA expression and secretion were assessed using RT-PCR and a bioassay, respectively. Stimulation with TNF-α did not affect IL-6 mRNA expression, whereas IL-1β stimulated IL-6 mRNA and protein synthesis in a time- and concentration-dependent fashion. In contrast, IL-6 significantly and dose-dependently suppressed IL-6 mRNA expression. In summary, we have presented evidence that enteric glial cells are a potential source of IL-6 in the myenteric plexus and that cytokine production by enteric glial cells can be regulated by cytokines. These findings strongly support the contention that enteric glial cells act as immunomodulatory cells in the enteric nervous system.


2021 ◽  
Vol 22 (18) ◽  
pp. 9659
Author(s):  
Yue Ji ◽  
Paul Kwong-Hang Tam ◽  
Clara Sze-Man Tang

The development of the enteric nervous system (ENS) is highly modulated by the synchronized interaction between the enteric neural crest cells (ENCCs) and the neural stem cell niche comprising the gut microenvironment. Genetic defects dysregulating the cellular behaviour(s) of the ENCCs result in incomplete innervation and hence ENS dysfunction. Hirschsprung disease (HSCR) is a rare complex neurocristopathy in which the enteric neural crest-derived cells fail to colonize the distal colon. In addition to ENS defects, increasing evidence suggests that HSCR patients may have intrinsic defects in the niche impairing the extracellular matrix (ECM)-cell interaction and/or dysregulating the cellular niche factors necessary for controlling stem cell behaviour. The niche defects in patients may compromise the regenerative capacity of the stem cell-based therapy and advocate for drug- and niche-based therapies as complementary therapeutic strategies to alleviate/enhance niche-cell interaction. Here, we provide a summary of the current understandings of the role of the enteric neural stem cell niche in modulating the development of the ENS and in the pathogenesis of HSCR. Deciphering the contribution of the niche to HSCR may provide important implications to the development of regenerative medicine for HSCR.


Neurosignals ◽  
2001 ◽  
Vol 10 (5) ◽  
pp. 336-340 ◽  
Author(s):  
Masato Nagahama ◽  
Reiji Semba ◽  
Masako Tsuzuki ◽  
Eiko Aoki

Sign in / Sign up

Export Citation Format

Share Document