scholarly journals B cell-intrinsic requirement for WNK1 kinase in T cell-dependent antibody responses

2021 ◽  
Author(s):  
Darryl Hayward ◽  
Lesley Vanes ◽  
Stefanie Wissmann ◽  
Sujana Sivapatham ◽  
Harald Hartweger ◽  
...  

AbstractMigration and adhesion play critical roles in B cells, regulating recirculation between lymphoid organs, migration within lymphoid tissue and interaction with CD4+ T cells. However, there is limited knowledge of how B cells integrate chemokine receptor and integrin signaling with B cell activation to generate efficient humoral responses. Here we show that the WNK1 kinase, a regulator of migration and adhesion, is essential in B cells for T-dependent antibody responses. We demonstrate that WNK1 transduces signals from the BCR, CXCR5 and CD40, and using intravital imaging we show that WNK1 regulates migration of naive and activated B cells, and their interactions with T cells. Unexpectedly, we show that WNK1 is required for BCR- and CD40-induced proliferation, acting through the OXSR1 and STK39 kinases, and for efficient B cell-T cell collaboration in vivo. Thus, WNK1 is critical for humoral immune responses, by regulating B cell migration, adhesion and T cell-dependent activation.SummaryThe WNK1 kinase is essential in B cells for T-dependent antibody responses because it is activated by signaling from BCR, CXCR5 and CD40 and regulates B cell migration, adhesion, T-dependent activation, and differentiation into germinal center B cells and plasma cells.

1996 ◽  
Vol 183 (5) ◽  
pp. 2303-2312 ◽  
Author(s):  
K M Toellner ◽  
A Gulbranson-Judge ◽  
D R Taylor ◽  
D M Sze ◽  
I C MacLennan

Immunoglobulin (Ig) class switch recombination is associated with the production and splicing of germline IgCH messenger RNA transcripts. Levels of gamma 1 transcripts in mouse spleen sections were assessed by semiquantitative analysis of reverse transcriptase polymerase chain reaction (PCR) products during primary and secondary antibody responses to chicken gamma globulin (CGG). This was correlated with the appearance of CGG-specific B cells and their growth and differentiation to plasma cells. After primary immunization with CGG, gamma 1 switch transcripts appeared after 4 d, peaked at a median of six times starting levels between 10 and 18 d after immunization, and returned to background levels before secondary immunization at 5 wk. By contrast, after secondary challenge with CGG, a sevenfold increase in transcripts occurs during the first d. The level again doubles by day 3, when it is six times that which is seen at the peak of the primary response. After day 4, there was a gradual decline over the next 2-3 wk. Within 12 h of secondary immunization, antigen-specific memory B cells appeared in the outer I zone and by 24 h entered S phase, presumably as a result of cognate interaction with primed T cells. Over the next few hours, they migrated to the edge of the red pulp, where they grew exponentially until the fourth day, when they synchronously differentiated to become plasma cells. The same pattern was seen for the migration, growth, and differentiation of virgin hapten-specific B cells when CGG-primed mice were challenged with hapten protein. The continued production of transcripts after day 3 indicates that switching also occurs in germinal centers, but in a relatively small proportion of their B cells. The impressive early production of switch transcripts during T cell-dependent antibody responses occurs in cells that are about to undergo massive clonal expansion. It is argued that Ig class switching at this time, which is associated with cognate T cell-B cell interaction in the T zone, has a major impact on the class and subclasses of Ig produced during the response.


1998 ◽  
Vol 188 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Thomas Fehr ◽  
Robert C. Rickert ◽  
Bernhard Odermatt ◽  
Jürgen Roes ◽  
Klaus Rajewsky ◽  
...  

Coligation of CD19, a molecule expressed during all stages of B cell development except plasmacytes, lowers the threshold for B cell activation with anti-IgM by a factor of 100. The cytoplasmic tail of CD19 contains nine tyrosine residues as possible phosphorylation sites and is postulated to function as the signal transducing element for complement receptor (CR)2. Generation and analysis of CD19 gene–targeted mice revealed that T cell–dependent (TD) antibody responses to proteinaceous antigens were impaired, whereas those to T cell–independent (TI) type 2 antigens were normal or even augmented. These results are compatible with earlier complement depletion studies and the postulated function of CD19. To analyze the role of CD19 in antiviral antibody responses, we immunized CD19−/− mice with viral antigens of TI-1, TI-2, and TD type. The effect of CD19 on TI responses was more dependent on antigen dose and replicative capacity than on antigen type. CR blocking experiments confirmed the role of CD19 as B cell signal transducer for complement. In contrast to immunization with protein antigens, infection of CD19−/− mice with replicating virus led to generation of specific germinal centers, which persisted for >100 d, whereas maintenance of memory antibody titers as well as circulating memory B cells was fully dependent on CD19. Thus, our study confirms a costimulatory role of CD19 on B cells under limiting antigen conditions and indicates an important role for B cell memory.


2003 ◽  
Vol 197 (2) ◽  
pp. 195-206 ◽  
Author(s):  
Simon Fillatreau ◽  
David Gray

We investigated the mechanism of CD4 T cell accumulation in B cell follicles after immunization. Follicular T cell numbers were correlated with the number of B cells, indicating B cell control of the niche that T cells occupy. Despite this, we found no role for B cells in the follicular migration of T cells. Instead, T cells are induced to migrate into B cell follicles entirely as a result of interaction with dendritic cells (DCs). Migration relies on CD40-dependent maturation of DCs, as it did not occur in CD40-deficient mice but was reconstituted with CD40+ DCs. Restoration was not achieved by the activation of DCs with bacterial activators (e.g., lipopolysaccharide, CpG), but was by the injection of OX40L–huIgG1 fusion protein. Crucially, the up-regulation of OX40L (on antigen-presenting cells) and CXCR-5 (on T cells) are CD40-dependent events and we show that T cells do not migrate to follicles in immunized OX40-deficient mice.


1984 ◽  
Vol 159 (3) ◽  
pp. 881-905 ◽  
Author(s):  
J D Ashwell ◽  
A L DeFranco ◽  
W E Paul ◽  
R H Schwartz

In this report we have examined the ability of small resting B cells to act as antigen-presenting cells (APC) to antigen-specific MHC-restricted T cells as assessed by either T cell proliferation or T cell-dependent B cell stimulation. We found that 10 of 14 in vitro antigen-specific MHC-restricted T cell clones and lines and three of four T cell hybridomas could be induced to either proliferate or secrete IL-2 in the presence of lightly irradiated (1,000 rads) purified B cells and the appropriate foreign antigen. All T cell lines and hybridomas were stimulated to proliferate or make IL-2 by macrophage- and dendritic cell-enriched populations and all T cells tested except one hybridoma caused B cell activation when stimulated with B cells as APC. Furthermore, lightly irradiated, highly purified syngeneic B cells were as potent a source of APC for inducing B cell activation as were low density dendritic and macrophage-enriched cells. Lymph node T cells freshly taken from antigen-primed animals were also found to proliferate when cultured with purified B cells and the appropriate antigen. Thus, small resting B cells can function as APC to a variety of T cells. This APC function was easily measured when the cells were irradiated with 1,000 rads, but was greatly diminished or absent when they were irradiated with 3,300 rads. Thus, the failure of some other laboratories to observe this phenomenon may be the result of the relative radiosensitivity of the antigen-presenting function of the B cells. In addition, this radiosensitivity allowed us to easily distinguish B cell antigen presentation from presentation by the dendritic cell and macrophage, as the latter was resistant to 3,300 rads. Finally, one T cell clone that failed to proliferate when B cells were used as APC was able to recruit allogeneic B cells to proliferate in the presence of syngeneic B cells and the appropriate antigen. This result suggests that there are at least two distinct pathways of activation in T cells, one that leads to T cell proliferation and one that leads to the secretion of B cell recruitment factor(s).


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Tyler C. Moore ◽  
Ronald J. Messer ◽  
Lorena M. Gonzaga ◽  
Jennifer M. Mather ◽  
Aaron B. Carmody ◽  
...  

ABSTRACTFriend virus (FV) is a naturally occurring mouse retrovirus that infects dividing cells of the hematopoietic lineage, including antigen-presenting cells (APCs). The infection of APCs by viruses often induces their dysfunction, and it has been shown that FV infection reduces the ability of dendritic cells (DCs) to prime critical CD8+T cell responses. Nonetheless, mice mount vigorous CD8+T cell responses, so we investigated whether B cells might serve as alternative APCs during FV infection. Directex vivoanalysis of B cells from FV-infected mice revealed that infected but not uninfected B cells upregulated expression of the costimulatory molecules CD80, CD86, and CD40, as well as major histocompatibility complex class II (MHC-II) molecules. Furthermore,in vitrostudies showed that, compared to uninfected B cells from the same mice, the FV-infected B cells had significantly enhanced APC function, as measured by their capacity to prime CD8+T cell activation and proliferation. Thus, in contrast to DCs, infection of B cells with FV enhanced their APC capacity and ability to stimulate the CD8+T cell responses essential for virus control. FV infections also induce the activation and expansion of regulatory T cells (Tregs), so it was of interest to determine the impact of Tregs on B cell activation. The upregulation of costimulatory molecule expression and APC function of B cells was even more strongly enhanced byin vivodepletion of regulatory T cells than infection. Thus, Tregs exert potent homeostatic suppression of B cell activation that is partially overcome by FV infection.IMPORTANCEThe primary role of B cells in immunity is considered the production of pathogen-specific antibodies, but another, less-well-studied, function of B cells is to present foreign antigens to T cells to stimulate their activation and proliferation. Dendritic cells (DCs) are considered the most important antigen-presenting cells (APCs) for CD8+T cells, but DCs lose APC function when infected with Friend virus (FV), a model retrovirus of mice. Interestingly, B cells were better able to stimulate CD8+T cell responses when they were infected with FV. We also found that the activation status of B cells under homeostatic conditions was potently modulated by regulatory T cells. This study illustrates an important link between B cell and T cell responses and illustrates an additional mechanism by which regulatory T cells suppress critical T cell responses during viral infections.


2011 ◽  
Vol 208 (7) ◽  
pp. 1377-1388 ◽  
Author(s):  
Sau K. Lee ◽  
Robert J. Rigby ◽  
Dimitra Zotos ◽  
Louis M. Tsai ◽  
Shimpei Kawamoto ◽  
...  

T follicular helper cells (Tfh cells) localize to follicles where they provide growth and selection signals to mutated germinal center (GC) B cells, thus promoting their differentiation into high affinity long-lived plasma cells and memory B cells. T-dependent B cell differentiation also occurs extrafollicularly, giving rise to unmutated plasma cells that are important for early protection against microbial infections. Bcl-6 expression in T cells has been shown to be essential for the formation of Tfh cells and GC B cells, but little is known about its requirement in physiological extrafollicular antibody responses. We use several mouse models in which extrafollicular plasma cells can be unequivocally distinguished from those of GC origin, combined with antigen-specific T and B cells, to show that the absence of T cell–expressed Bcl-6 significantly reduces T-dependent extrafollicular antibody responses. Bcl-6+ T cells appear at the T–B border soon after T cell priming and before GC formation, and these cells express low amounts of PD-1. Their appearance precedes that of Bcl-6+ PD-1hi T cells, which are found within the GC. IL-21 acts early to promote both follicular and extrafollicular antibody responses. In conclusion, Bcl-6+ T cells are necessary at B cell priming to form extrafollicular antibody responses, and these pre-GC Tfh cells can be distinguished phenotypically from GC Tfh cells.


2004 ◽  
Vol 200 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Christopher M. Snyder ◽  
Katja Aviszus ◽  
Ryan A. Heiser ◽  
Daniel R. Tonkin ◽  
Amanda M. Guth ◽  
...  

Antibody diversity creates an immunoregulatory challenge for T cells that must cooperate with B cells, yet discriminate between self and nonself. To examine the consequences of T cell reactions to the B cell receptor (BCR), we generated a transgenic (Tg) line of mice expressing a T cell receptor (TCR) specific for a κ variable region peptide in monoclonal antibody (mAb) 36-71. The κ epitope was originally generated by a pair of somatic mutations that arose naturally during an immune response. By crossing this TCR Tg mouse with mice expressing the κ chain of mAb 36-71, we found that κ-specific T cells were centrally deleted in thymi of progeny that inherited the κTg. Maternally derived κTg antibody also induced central deletion. In marked contrast, adoptive transfer of TCR Tg T cells into κTg recipients resulted in T and B cell activation, lymphadenopathy, splenomegaly, and the production of IgG antichromatin antibodies by day 14. In most recipients, autoantibody levels increased with time, Tg T cells persisted for months, and a state of lupus nephritis developed. Despite this, Tg T cells appeared to be tolerant as assessed by severely diminished proliferative responses to the Vκ peptide. These results reveal the importance of attaining central and peripheral T cell tolerance to BCR V regions. They suggest that nondeletional forms of T tolerance in BCR-reactive T cells may be insufficient to preclude helper activity for chromatin-reactive B cells.


Blood ◽  
2009 ◽  
Vol 113 (11) ◽  
pp. 2426-2433 ◽  
Author(s):  
Fouad Eddahri ◽  
Sébastien Denanglaire ◽  
Fabrice Bureau ◽  
Rosanne Spolski ◽  
Warren J. Leonard ◽  
...  

Abstract The conditions leading to the activation/differentiation of T-helper (Th) cells dedicated for B-cell antibody production are still poorly characterized. We now demonstrate that interleukin-6 (IL-6) promotes the differentiation of naive T lymphocytes into helper cells able to promote B-cell activation and antibody secretion. IL-6–driven acquisition of B-cell help capacity requires expression of the signal transducer and activator of transcription 3 (STAT3), but not STAT4 or STAT6 transcription factors, suggesting that the ability to provide help to B cells is not restricted to a well-defined Th1 or Th2 effector population. T cell–specific STAT3-deficient mice displayed reduced humoral responses in vivo that could not be related to an altered expansion of CXCR5-expressing helper T cells. IL-6 was shown to promote IL-21 secretion, a cytokine that was similarly found to promote the differentiation of naive T cells into potent B-cell helper cells. Collectively, these data indicate that the ability to provide B-cell help is regulated by IL-6/IL-21 through STAT3 activation, independently of Th1, Th2, Th17, or follicular helper T cell (TFH) differentiation.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1753-1753 ◽  
Author(s):  
Shih-Shih Chen ◽  
Steven Ham ◽  
Kanti R. Rai ◽  
Karen McGovern ◽  
Jeffery L. Kutok ◽  
...  

Abstract Duvelisib (IPI-145), a dual inhibitor of phosphoinositide 3-kinase (PI3K)-δ and -γ, has shown clinical activity in treatment-naïve and relapsed/refractory chronic lymphocytic leukemia (CLL) patients. Clinically, duvelisib results in a redistribution of malignant B cells and concomitant reduction in nodal enlargement. These effects are believed to be due to important roles of PI3K- δ and -γ in CXCL12-mediated CLL cell migration (Peluso 2014), cytokine-induced CLL B-cell proliferation, and BCR-stimulated B-cell survival (Balakrishnan 2015). Additional data suggest an effect of duvelisib on the tumor supporting cells of the CLL microenvironment. This includes preclinical studies demonstrating that PI3K-γ inhibition blocks normal T cell migration toward tumor chemokines and prevents murine bone marrow-derived M2 macrophage polarization (Peluso 2014), as well as clinical data in CLL patients receiving duvelisib showing reduced serum levels of myeloid and T cell-secreted cytokines and chemokines (Douglas 2015). To further characterize duvelisib's effect on CLL cells and the tumor microenvironment (TME), a murine xenograft model using primary human CLL cells was employed. We first studied duvelisib's effect on CLL B- and T-cell migration in vivo. CLL PBMCs (n=2; 1 IGHV unmutated (U)-CLL, 1 IGHV mutated (M)-CLL) pre-treated with duvelisib for 48 hours were injected retro-orbitally into NOD-scid IL2Rgammanull (NSG) mice. B- and T-cell localization in tissues and circulation was studied 1 and 24 hours post-injection. Duvelisib treatment (1000 nM) prevented the egress of CLL B and T cells from the circulation into the spleen, indicating impaired homing of CLL B and T cells. To better define the effect of duvelisib on T-cell migration, T cells from CLL patients (n=3; 2 U-CLL, 1 M-CLL) treated ex vivo with duvelisib at 1, 10, 100 and 1000 nM were injected into mice and analyzed for their trafficking 24 hours later. Inhibition of T-cell homing to spleen was dose dependent, with only 100 and 1000 nM having significant effects. Given duvelisib's cellular IC50s for PI3K isoforms, these results suggest that impaired T-cell migration is due to PI3K-γ inhibition, and studies with isoform-selective PI3K-δ and PI3K-γ inhibitors are currently underway to examine this possibility. The effect of duvelisib on CLL T-cell proliferation was evaluated after in vitro activation with anti-CD3/28 Dynabeads plus IL2 (n=6; 3 U-CLL, 3M-CLL). In duvelisib treated cells, CD4+, but not CD8+, T-cell proliferation was inhibited at doses of 100 and 1000 nM, suggesting a role for PI3K-γ. The effects of duvelisib on CLL B- and T-cell growth in vivo (n=4; 2 U-CLL, 2 M-CLL) were then studied. Autologous CLL T cells were stimulated as above and injected with CLL PBMCs into NSG mice. Animals treated orally with duvelisib for 3 weeks at 100 mg/kg/day had preferentially reduced CD4+ T-cell recovery from spleens, thereby decreasing the CD4 to CD8 ratio. In each case, duvelisib treatment reduced the number of splenic CLL B cells. This reduction reflected inhibition of both CLL cell proliferation and survival, since duvelisib treatment decreased the percentage of cycling CLL cells and increased the percentage of apoptotic B cells. Thus, duvelisib may target CLL B-cell growth directly, or indirectly by inhibiting the support of CD4+ T cells in the TME. The potential effect of duvelisib on the tumor-supporting myeloid compartment was also tested. Because of limited human myeloid-cell engraftment in our NSG model, we studied the effect of duvelisib on murine macrophages. Mice receiving duvelisib had reduced numbers of splenic CD11b+ GR-1low LY-6Clow LY-6Gneg macrophages compared to controls, suggesting duvelisib altered macrophage development. Prior in vitro studies demonstrated inhibition of CLL B-cell survival and proliferation by duvelisib, as well as blockade of T-cell migration and M2 macrophage polarization (Balakrishnan 2015; Peluso 2014). Our current in vivo studies further support duvelisib's effect on CLL B-cell growth and survival through inhibition of cellular homing to supportive tissue niches and alterations in the TME. The latter, in part, is through suppression of T-cell support and alterations in the macrophage compartment. Overall, these preclinical results suggest that inhibition of PI3K-δ and PI3K-γ by duvelisib affects CLL cell survival through direct and indirect mechanisms. Disclosures McGovern: Infinity Pharmaceuticals, Inc.: Employment. Kutok:Infinity Pharmaceuticals, Inc.: Employment.


1982 ◽  
Vol 155 (5) ◽  
pp. 1267-1276 ◽  
Author(s):  
Y Asano ◽  
R J Hodes

The present studies have been carried out to characterize the regulatory influences acting upon defined pathways of T cell-dependent B cell activation. In these studies, it was demonstrated that high concentrations of free carrier strongly inhibited the MHC-restricted in vitro T cell-dependent antibody responses of primed Lyb-5- B cells to the corresponding carrier-hapten conjugate. In contrast, these same concentrations of free carrier failed to inhibit the T cell dependent responses of Lyb-5+ B cells to the same antigen. The inhibition of Lyb-5- B cell responses by free carrier was shown to result from active suppression mediated by carrier-specific primed Lyt-1+2- T cells and to require the additional participation of unprimed Lyt-1-2+ T cells. The activation of this suppression was antigen-specific, but suppression once activated was antigen nonspecific in its effect. These findings thus demonstrate that distinct pathways of B cell activation can be independently regulated by T suppressor network influences, and that these pathways therefore constitute potentially independent components of the immune response to a given antigenic stimulus.


Sign in / Sign up

Export Citation Format

Share Document