scholarly journals B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells

2011 ◽  
Vol 208 (7) ◽  
pp. 1377-1388 ◽  
Author(s):  
Sau K. Lee ◽  
Robert J. Rigby ◽  
Dimitra Zotos ◽  
Louis M. Tsai ◽  
Shimpei Kawamoto ◽  
...  

T follicular helper cells (Tfh cells) localize to follicles where they provide growth and selection signals to mutated germinal center (GC) B cells, thus promoting their differentiation into high affinity long-lived plasma cells and memory B cells. T-dependent B cell differentiation also occurs extrafollicularly, giving rise to unmutated plasma cells that are important for early protection against microbial infections. Bcl-6 expression in T cells has been shown to be essential for the formation of Tfh cells and GC B cells, but little is known about its requirement in physiological extrafollicular antibody responses. We use several mouse models in which extrafollicular plasma cells can be unequivocally distinguished from those of GC origin, combined with antigen-specific T and B cells, to show that the absence of T cell–expressed Bcl-6 significantly reduces T-dependent extrafollicular antibody responses. Bcl-6+ T cells appear at the T–B border soon after T cell priming and before GC formation, and these cells express low amounts of PD-1. Their appearance precedes that of Bcl-6+ PD-1hi T cells, which are found within the GC. IL-21 acts early to promote both follicular and extrafollicular antibody responses. In conclusion, Bcl-6+ T cells are necessary at B cell priming to form extrafollicular antibody responses, and these pre-GC Tfh cells can be distinguished phenotypically from GC Tfh cells.

2020 ◽  
Author(s):  
Can Cui ◽  
Jiawei Wang ◽  
Ping-Min Chen ◽  
Kelli A. Connolly ◽  
Martina Damo ◽  
...  

AbstractCD4+ T follicular helper (TFH) cells provide help to B cells, which is critical for germinal center (GC) formation, but the importance of TFH-B cell interactions in cancer is unclear. We found TFH cells correlated with GC B cells and with prolonged survival of lung adenocarcinoma (LUAD) patients. To investigate further, we developed an LUAD model, in which tumor cells expressed B-cell- and T-cell-recognized neoantigens. Interactions between tumor-specific TFH and GC B cells were necessary for tumor control, as were effector CD8+ T cells. The latter were reduced in the absence of T cell-B cell interactions or the IL-21 receptor. IL-21 was produced primarily by TFH cells, development of which required B cells. Moreover, development of tumor-specific TFH cell-responses was also reliant upon tumors that expressed B-cell-recognized neoantigens. Thus, tumor-neoantigens themselves can control the fate decisions of tumor-specific CD4+ T cells by facilitating interactions with tumor-specific B cells.Abstract Figure


2021 ◽  
Author(s):  
Darryl Hayward ◽  
Lesley Vanes ◽  
Stefanie Wissmann ◽  
Sujana Sivapatham ◽  
Harald Hartweger ◽  
...  

AbstractMigration and adhesion play critical roles in B cells, regulating recirculation between lymphoid organs, migration within lymphoid tissue and interaction with CD4+ T cells. However, there is limited knowledge of how B cells integrate chemokine receptor and integrin signaling with B cell activation to generate efficient humoral responses. Here we show that the WNK1 kinase, a regulator of migration and adhesion, is essential in B cells for T-dependent antibody responses. We demonstrate that WNK1 transduces signals from the BCR, CXCR5 and CD40, and using intravital imaging we show that WNK1 regulates migration of naive and activated B cells, and their interactions with T cells. Unexpectedly, we show that WNK1 is required for BCR- and CD40-induced proliferation, acting through the OXSR1 and STK39 kinases, and for efficient B cell-T cell collaboration in vivo. Thus, WNK1 is critical for humoral immune responses, by regulating B cell migration, adhesion and T cell-dependent activation.SummaryThe WNK1 kinase is essential in B cells for T-dependent antibody responses because it is activated by signaling from BCR, CXCR5 and CD40 and regulates B cell migration, adhesion, T-dependent activation, and differentiation into germinal center B cells and plasma cells.


2012 ◽  
Vol 109 (38) ◽  
pp. 15401-15406 ◽  
Author(s):  
Xijun Ou ◽  
Shengli Xu ◽  
Kong-Peng Lam

Mutations in TNFRSF13B, better known as transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), contribute to common variable immunodeficiency and autoimmunity in humans. How TACI regulates these two opposing conditions is unclear, however. TACI binds the cytokines BAFF and APRIL, and previous studies using gene KO mice indicated that loss of TACI affected only T-cell–independent antibody responses. Here we demonstrate that Taci−/− mice have expanded populations of T follicular helper (Tfh) and germinal center (GC) B cells in their spleens when immunized with T-cell–dependent antigen. The increased numbers of Tfh and GC B cells in Taci−/− mice are largely a result of up-regulation of inducible costimulator (ICOS) ligand on TACI-deficient B cells, given that ablation of one copy of the Icosl allele restores normal levels of Tfh and GC B cells in Taci−/− mice. Interestingly, despite the presence of increased Tfh and antigen-specific B cells, immunized Taci−/− mice demonstrate defective antigen-specific antibody responses resulting from significantly reduced numbers of antibody-secreting cells (ASCs). This effect is attributed to the failure to down-regulate the proapoptotic molecule BIM in Taci−/− plasma cells. Ablation of BIM could rescue ASC formation in Taci−/− mice, suggesting that TACI is more important for the survival of plasma cells than for the differentiation of these cells. Thus, our data reveal dual roles for TACI in B-cell terminal differentiation. On one hand, TACI modulates ICOS ligand expression and thereby limits the size of Tfh and GC B-cell compartments and prevents autoimmunity. On the other hand, it regulates the survival of ASCs and plays an important role in humoral immunity.


Author(s):  
Casper Marsman ◽  
Dorit Verhoeven

Background/methods: For mechanistic studies, in vitro human B cell differentiation and generation of plasma cells are invaluable techniques. However, the heterogeneity of both T cell-dependent (TD) and T cell-independent (TI) stimuli and the disparity of culture conditions used in existing protocols makes interpretation of results challenging. The aim of the present study was to achieve the most optimal B cell differentiation conditions using isolated CD19+ B cells and PBMC cultures. We addressed multiple seeding densities, different durations of culturing and various combinations of TD stimuli and TI stimuli including B cell receptor (BCR) triggering. B cell expansion, proliferation and differentiation was analyzed after 6 and 9 days by measuring B cell proliferation and expansion, plasmablast and plasma cell formation and immunoglobulin (Ig) secretion. In addition, these conditions were extrapolated using cryopreserved cells and differentiation potential was compared. Results: This study demonstrates improved differentiation efficiency after 9 days of culturing for both B cell and PBMC cultures using CD40L and IL-21 as TD stimuli and 6 days for CpG and IL-2 as TI stimuli. We arrived at optimized protocols requiring 2500 and 25.000 B cells per culture well for TD and TI assays, respectively. The results of the PBMC cultures were highly comparable to the B cell cultures, which allows dismissal of additional B cell isolation steps prior to culturing. In these optimized TD conditions, the addition of anti-BCR showed little effect on phenotypic B cell differentiation, however it interferes with Ig secretion measurements. Addition of IL-4 to the TD stimuli showed significantly lower Ig secretion. The addition of BAFF to optimized TI conditions showed enhanced B cell differentiation and Ig secretion in B cell but not in PBMC cultures. With this approach, efficient B cell differentiation and Ig secretion was accomplished when starting from fresh or cryopreserved samples. Conclusion: Our methodology demonstrates optimized TD and TI stimulation protocols for more indepth analysis of B cell differentiation in primary human B cell and PBMC cultures while requiring low amounts of B cells, making them ideally suited for future clinical and research studies on B cell differentiation of patient samples from different cohorts of B cell-mediated diseases.


2021 ◽  
Author(s):  
C. N. Jondle ◽  
K. E. Johnson ◽  
W. P. Mboko ◽  
V. L. Tarakanova

Gammaherpesviruses are ubiquitous pathogens that establish life-long infection and are associated with B cell lymphomas. To establish chronic infection, these viruses usurp B cell differentiation and drive a robust germinal center response to expand the latent viral reservoir and gain access to memory B cells. Germinal center B cells, while important for the establishment of latent infection, are also thought to be the target of viral transformation. The host and viral factors that impact the gammaherpesvirus-driven germinal center response are not clearly defined. We showed that global expression of the antiviral and tumor-suppressor interferon regulatory factor 1 (IRF-1) selectively attenuates the murine gammaherpesvirus 68 (MHV68)-driven germinal center response and restricts expansion of the latent viral reservoir. In this study we found that T cell intrinsic IRF-1 expression recapitulates some aspects of antiviral state imposed by IRF-1 during chronic MHV68 infection, including attenuation of the germinal center response and viral latency in the spleen. We also discovered that global and T cell-intrinsic IRF-1 deficiency leads to unhindered rise of IL-17A-expressing and follicular helper T cell populations, two CD4 + T cell subsets that support chronic MHV68 infection. Thus, this study unveils a novel aspect of antiviral activity of IRF-1 by demonstrating IRF-1-mediated suppression of specific CD4 + T cell subsets that support chronic gammaherpesvirus infection. Importance Gammaherpesviruses infect over 95% of the adult population, last the lifetime of the host, and are associated with multiple cancers. These viruses usurp the germinal center response to establish lifelong infection in memory B cells. This manipulation of B cell differentiation by the virus is thought to contribute to lymphomagenesis, though exactly how the virus precipitates malignant transformation in vivo is unclear. IRF-1, a host transcription factor and a known tumor suppressor, restricts the MHV68-driven germinal center response in a B cell-extrinsic manner. We found that T cell intrinsic IRF-1 expression attenuates the MHV68-driven germinal center response by restricting the CD4 + T follicular helper population. Further, our study identified IRF-1 as a novel negative regulator of IL-17-driven immune responses, highlighting the multifaceted role of IRF-1 in gammaherpesvirus infection.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kristian Assing ◽  
Christian Nielsen ◽  
Marianne Jakobsen ◽  
Charlotte B. Andersen ◽  
Kristin Skogstrand ◽  
...  

Abstract Background Germinal center derived memory B cells and plasma cells constitute, in health and during EBV reactivation, the largest functional EBV reservoir. Hence, by reducing germinal center derived formation of memory B cells and plasma cells, EBV loads may be reduced. Animal and in-vitro models have shown that IL-21 can support memory B and plasma cell formation and thereby potentially contribute to EBV persistence. However, IL-21 also displays anti-viral effects, as mice models have shown that CD4+ T cell produced IL-21 is critical for the differentiation, function and survival of anti-viral CD8+ T cells able to contain chronic virus infections. Case presentation We present immunological work-up (flow-cytometry, ELISA and genetics) related to a patient suffering from a condition resembling B cell chronic active EBV infection, albeit with moderately elevated EBV copy numbers. No mutations in genes associated with EBV disease, common variable immunodeficiency or pertaining to the IL-21 signaling pathway (including hypermorphic IL-21 mutations) were found. Increased (> 5-fold increase 7 days post-vaccination) CD4+ T cell produced (p < 0.01) and extracellular IL-21 levels characterized our patient and coexisted with: CD8+ lymphopenia, B lymphopenia, hypogammaglobulinemia, compromised memory B cell differentiation, absent induction of B-cell lymphoma 6 protein (Bcl-6) dependent peripheral follicular helper T cells (pTFH, p = 0.01), reduced frequencies of peripheral CD4+ Bcl-6+ T cells (p = 0.05), compromised plasmablast differentiation (reduced protein vaccine responses (p < 0.001) as well as reduced Treg frequencies. Supporting IL-21 mediated suppression of pTFH formation, pTFH and CD4+ IL-21+ frequencies were strongly inversely correlated, prior to and after vaccination, in the patient and in controls, Spearman’s rho: − 0.86, p < 0.001. Conclusions To the best of our knowledge, this is the first report of elevated CD4+ IL-21+ T cell frequencies in human EBV disease. IL-21 overproduction may, apart from driving T cell mediated anti-EBV responses, disrupt germinal center derived memory B cell and plasma cell formation, and thereby contribute to EBV disease control.


2010 ◽  
Vol 207 (2) ◽  
pp. 353-363 ◽  
Author(s):  
Michelle A. Linterman ◽  
Laura Beaton ◽  
Di Yu ◽  
Roybel R. Ramiscal ◽  
Monika Srivastava ◽  
...  

During T cell–dependent responses, B cells can either differentiate extrafollicularly into short-lived plasma cells or enter follicles to form germinal centers (GCs). Interactions with T follicular helper (Tfh) cells are required for GC formation and for selection of somatically mutated GC B cells. Interleukin (IL)-21 has been reported to play a role in Tfh cell formation and in B cell growth, survival, and isotype switching. To date, it is unclear whether the effect of IL-21 on GC formation is predominantly a consequence of this cytokine acting directly on the Tfh cells or if IL-21 directly influences GC B cells. We show that IL-21 acts in a B cell–intrinsic fashion to control GC B cell formation. Mixed bone marrow chimeras identified a significant B cell–autonomous effect of IL-21 receptor (R) signaling throughout all stages of the GC response. IL-21 deficiency profoundly impaired affinity maturation and reduced the proportion of IgG1+ GC B cells but did not affect formation of early memory B cells. IL-21R was required on GC B cells for maximal expression of Bcl-6. In contrast to the requirement for IL-21 in the follicular response to sheep red blood cells, a purely extrafollicular antibody response to Salmonella dominated by IgG2a was intact in the absence of IL-21.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuhong Chen ◽  
Mei Yu ◽  
Yongwei Zheng ◽  
Guoping Fu ◽  
Gang Xin ◽  
...  

Abstract Many autoimmune diseases are characterized by the production of autoantibodies. The current view is that CD4+ T follicular helper (Tfh) cells are the main subset regulating autoreactive B cells. Here we report a CXCR5+PD1+ Tfh subset of CD8+ T cells whose development and function are negatively modulated by Stat5. These CD8+ Tfh cells regulate the germinal center B cell response and control autoantibody production, as deficiency of Stat5 in CD8 T cells leads to an increase of CD8+ Tfh cells, resulting in the breakdown of B cell tolerance and concomitant autoantibody production. CD8+ Tfh cells share similar gene signatures with CD4+ Tfh, and require CD40L/CD40 and TCR/MHCI interactions to deliver help to B cells. Our study thus highlights the diversity of follicular T cell subsets that contribute to the breakdown of B-cell tolerance.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4535-4535
Author(s):  
Yongxia Wu ◽  
Steven D Schutt ◽  
Ryan P Flynn ◽  
Mengmeng Zhang ◽  
Hung D Nguyen ◽  
...  

Abstract Chronic graft-versus-host disease (cGVHD) remains to be a major cause of mortality and morbidity after allogeneic hematopoietic cell transplantation (allo-HCT). cGVHD is characterized as autoimmune-like fibrosis and antibody production, mediated by pathogenic T and B cells. Through producing pro-inflammatory cytokines, CD4 T cells are the driving force of cGVHD. Donor B cells augment the pathogenesis of cGVHD not only by acting as antigen-presenting cells (APCs) and promoting CD4 T-cell expansion and survival, but also by producing autoantibodies. microRNA (miR)-17-92 has been shown to regulate T-cell immunity including allogeneic, anti-viral, and anti-tumor responses. Recently, miR-17-92 was found to act together with Bcl-6 to promote the differentiation of Follicular help T (Tfh) cells. Furthermore, B-cell deficiency of miR-17-92 impairs IgG2c production. Since Tfh differentiation and antibody production are required for the development of cGVHD, we hypothesize that miR-17-92 contributes to the pathogenesis of cGVHD by promoting pathogenic T- and B-cell responses. By using Cre-loxp system, we generated B6 mice with conditional deficiency of miR-17-92 in T cells (CD4cre), B cells (CD19cre), or both (CD4CD19cre). aGVHD to cGVHD transition model (B6 to BALB/c) was utilized to test the effects of individual and combinational deficiency of miR-17-92 in T and/or B cells in the development of cGVHD. BALB/c mice were lethally irradiated and transferred with splenocytes plus BM cells derived from CD4cre, CD19cre or CD4CD19cre miR-17-92flox/flox B6 mice. WT B6 (Cre- miR-17-92flox/flox) mice were used as control donors. A significantly reduction of GVHD mortality was observed only in the recipients with CD4CD19cre grafts, but not with CD4cre or CD19cre grafts. Deficiency of miR-17-92 in donor T or B cells indeed improved the clinical manifestation of cGVHD, but the deficiency in both T and B cells showed further improvement, indicating the additive role of miR-17-92 in T and B cells in the pathogenesis of cGVHD. Mechanistically, deficiency of miR-17-92 in T cells resulted in the reduction of Tfh generation (Fig. A), germinal center (GC) B-cell and plasma cell differentiation, and the expression of MHC-II and CD86 on donor B cells in recipient spleens. Furthermore, deficiency of miR-17-92 in B cells significantly reduced the levels of total IgG and IgG2c in recipient serum (Fig. A). These data suggest that miR-17-92 contributes to both T- and B-cell differentiation and function, which is required for the development of cGVHD. To extend our findings, we used a bronchiolitis obliterans cGVHD model (B6 to B10.BR). Recipient mice were pre-conditioned and received either BM alone from WT or CD19cre B6 mice, or BM plus purified T cells from WT or CD4cre B6 mice. Deficiency of miR-17-92 in T cells or BM-derived B cells resulted in significant improvement in pulmonary functions in recipient mice, as demonstrated by a decrease in resistance and elastance and an increase in compliance (Fig. B). Consistently, we found that miR-17-92 promoted Tfh and GC B-cell differentiation (Fig. B), while inhibiting differentiation of T follicular regulatory cells in recipient spleens 60 days after allo-HCT. For translational purpose, we tested whether inhibition of miR-17-92 could ameliorate cGVHD using locked nucleic acid (LNA) antagomirs specific for miR-17 or miR-19, key members in this microRNA cluster. In a SLE cGVHD model (DBA2 to BALB/c), administration of anti-miR-17, but not anti-miR-19, significantly suppressed the incidence of proteinuria and the severity of clinical manifestation by inhibiting donor splenocyte expansion, expression of costimulatory molecules on donor B cells, and differentiation of GC B cells and plasma cells (Fig. C). In addition, systemic delivery of anti-miR-17 significantly improved skin cGVHD by restraining IL-17 producing CD4 T-cell infiltration in skin-draining lymph nodes in a scleroderma-cGVHD model (B10.D2 to BALB/c). Taken together, the current work reveals that miR-17-92 is required for T- and B-cell differentiation and function, and thus for the development of cGVHD. Furthermore, pharmacological inhibition of miR-17 represents a potential therapeutic strategy for the control of cGVHD after allo-HCT. Figure Figure. Disclosures No relevant conflicts of interest to declare.


1996 ◽  
Vol 183 (5) ◽  
pp. 2303-2312 ◽  
Author(s):  
K M Toellner ◽  
A Gulbranson-Judge ◽  
D R Taylor ◽  
D M Sze ◽  
I C MacLennan

Immunoglobulin (Ig) class switch recombination is associated with the production and splicing of germline IgCH messenger RNA transcripts. Levels of gamma 1 transcripts in mouse spleen sections were assessed by semiquantitative analysis of reverse transcriptase polymerase chain reaction (PCR) products during primary and secondary antibody responses to chicken gamma globulin (CGG). This was correlated with the appearance of CGG-specific B cells and their growth and differentiation to plasma cells. After primary immunization with CGG, gamma 1 switch transcripts appeared after 4 d, peaked at a median of six times starting levels between 10 and 18 d after immunization, and returned to background levels before secondary immunization at 5 wk. By contrast, after secondary challenge with CGG, a sevenfold increase in transcripts occurs during the first d. The level again doubles by day 3, when it is six times that which is seen at the peak of the primary response. After day 4, there was a gradual decline over the next 2-3 wk. Within 12 h of secondary immunization, antigen-specific memory B cells appeared in the outer I zone and by 24 h entered S phase, presumably as a result of cognate interaction with primed T cells. Over the next few hours, they migrated to the edge of the red pulp, where they grew exponentially until the fourth day, when they synchronously differentiated to become plasma cells. The same pattern was seen for the migration, growth, and differentiation of virgin hapten-specific B cells when CGG-primed mice were challenged with hapten protein. The continued production of transcripts after day 3 indicates that switching also occurs in germinal centers, but in a relatively small proportion of their B cells. The impressive early production of switch transcripts during T cell-dependent antibody responses occurs in cells that are about to undergo massive clonal expansion. It is argued that Ig class switching at this time, which is associated with cognate T cell-B cell interaction in the T zone, has a major impact on the class and subclasses of Ig produced during the response.


Sign in / Sign up

Export Citation Format

Share Document