scholarly journals Validation of a Trans-Ancestry Polygenic Risk Score for Type 2 Diabetes in Diverse Populations

Author(s):  
Tian Ge ◽  
Amit Patki ◽  
Vinodh Srinivasasainagendra ◽  
Yen-Feng Lin ◽  
Marguerite Ryan Irvin ◽  
...  

ABSTRACTType 2 diabetes (T2D) is a worldwide scourge caused by both genetic and environmental risk factors that disproportionately afflicts communities of color. Leveraging existing large-scale genome-wide association studies (GWAS), polygenic risk scores (PRS) have shown promise to complement established clinical risk factors and intervention paradigms, and improve early diagnosis and prevention of T2D. However, to date, T2D PRS have been most widely developed and validated in individuals of European descent. Comprehensive assessment of T2D PRS in non-European populations is critical for an equitable deployment of PRS to clinical practice that benefits global populations. Here we integrate T2D GWAS in European, African American and East Asian populations to construct a trans-ancestry T2D PRS using a newly developed Bayesian polygenic modeling method, and evaluate the PRS in the multi-ethnic eMERGE study, four African American cohorts, and the Taiwan Biobank. The trans-ancestry PRS was significantly associated with T2D status across the ancestral groups examined, and the top 2% of the PRS distribution can identify individuals with an approximately 2.5-4.5 fold of increase in T2D risk, suggesting the potential of using the trans-ancestry PRS as a meaningful index of risk among diverse patients in clinical settings. Our efforts represent the first step towards the implementation of the T2D PRS into routine healthcare.

2020 ◽  
Vol 5 ◽  
pp. 206
Author(s):  
Mathilde Boecker ◽  
Alvina G. Lai

Over the past three decades, the number of people globally with diabetes mellitus has more than doubled. It is estimated that by 2030, 439 million people will be suffering from the disease, 90-95% of whom will have type 2 diabetes (T2D). In 2017, 5 million deaths globally were attributable to T2D, placing it in the top 10 global causes of death. Because T2D is a result of both genetic and environmental factors, identification of individuals with high genetic risk can help direct early interventions to prevent progression to more serious complications. Genome-wide association studies have identified ~400 variants associated with T2D that can be used to calculate polygenic risk scores (PRS). Although PRSs are not currently more accurate than clinical predictors and do not yet predict risk with equal accuracy across all ethnic populations, they have several potential clinical uses. Here, we discuss potential usages of PRS for predicting T2D and for informing and optimising interventions. We also touch on possible health inequality risks of PRS and the feasibility of large-scale implementation of PRS in clinical practice. Before PRSs can be used as a therapeutic tool, it is important that further polygenic risk models are derived using non-European genome-wide association studies to ensure that risk prediction is accurate for all ethnic groups. Furthermore, it is essential that the ethical, social and legal implications of PRS are considered before their implementation in any context.


2018 ◽  
Author(s):  
Tom G. Richardson ◽  
Sean Harrison ◽  
Gibran Hemani ◽  
George Davey Smith

AbstractThe age of large-scale genome-wide association studies (GWAS) has provided us with an unprecedented opportunity to evaluate the genetic liability of complex disease using polygenic risk scores (PRS). In this study, we have analysed 162 PRS (P<5×l0 05) derived from GWAS and 551 heritable traits from the UK Biobank study (N=334,398). Findings can be investigated using a web application (http://mrcieu.mrsoftware.org/PRS_atlas/), which we envisage will help uncover both known and novel mechanisms which contribute towards disease susceptibility.To demonstrate this, we have investigated the results from a phenome-wide evaluation of schizophrenia genetic liability. Amongst findings were inverse associations with measures of cognitive function which extensive follow-up analyses using Mendelian randomization (MR) provided evidence of a causal relationship. We have also investigated the effect of multiple risk factors on disease using mediation and multivariable MR frameworks. Our atlas provides a resource for future endeavours seeking to unravel the causal determinants of complex disease.


Diabetes Care ◽  
2022 ◽  
Author(s):  
Tinashe Chikowore ◽  
Kenneth Ekoru ◽  
Marijana Vujkovi ◽  
Dipender Gill ◽  
Fraser Pirie ◽  
...  

OBJECTIVE Polygenic prediction of type 2 diabetes (T2D) in continental Africans is adversely affected by the limited number of genome-wide association studies (GWAS) of T2D from Africa and the poor transferability of European-derived polygenic risk scores (PRSs) in diverse ethnicities. We set out to evaluate if African American–, European-, or multiethnic-derived PRSs would improve polygenic prediction in continental Africans. RESEARCH DESIGN AND METHODS Using the PRSice software, ethnic-specific PRSs were computed with weights from the T2D GWAS multiancestry meta-analysis of 228,499 case and 1,178,783 control subjects. The South African Zulu study (n = 1,602 case and 981 control subjects) was used as the target data set. Validation and assessment of the best predictive PRS association with age at diagnosis were conducted in the Africa America Diabetes Mellitus (AADM) study (n = 2,148 case and 2,161 control subjects). RESULTS The discriminatory ability of the African American and multiethnic PRSs was similar. However, the African American–derived PRS was more transferable in all the countries represented in the AADM cohort and predictive of T2D in the country combined analysis compared with the European- and multiethnic-derived scores. Notably, participants in the 10th decile of this PRS had a 3.63-fold greater risk (odds ratio 3.63; 95% CI 2.19–4.03; P = 2.79 × 10−17) per risk allele of developing diabetes and were diagnosed 2.6 years earlier than those in the first decile. CONCLUSIONS African American–derived PRS enhances polygenic prediction of T2D in continental Africans. Improved representation of non-European populations (including Africans) in GWAS promises to provide better tools for precision medicine interventions in T2D.


2022 ◽  
Author(s):  
Tinashe Chikowore ◽  
Kenneth Ekoru ◽  
Marijana Vujkovic ◽  
Dipender Gill ◽  
Fraser Pirie ◽  
...  

<b>Objective. </b>Polygenic prediction of type 2 diabetes in<b> </b>continental Africans is adversely affected by the limited number of genome-wide association studies (GWAS) of type 2 diabetes from Africa and the poor transferability of European derived polygenic risk scores (PRS) in diverse ethnicities. We set out to evaluate if African American, European or multi-ethnic derived PRSs would improve polygenic prediction in continental Africans. <p><b>Research Design and Methods</b>. Using the PRSice software, ethnic-specific PRSs were computed with weights from the type 2 diabetes GWAS multi-ancestry meta-analysis of 228,499 cases and 1,178,783 controls. The South African Zulu study (1602 cases and 981 controls) was used as the target data set. Validation and assessment of the best predictive PRS association with age at diagnosis was done in the Africa America Diabetes Mellitus (AADM) study (2148 cases and 2161 controls).</p> <p> <b>Results. </b>The discriminatory ability of the African American and Multi-ethnic PRS were similar. However<b>, </b>the African American derived PRS was more transferable in all the countries represented in the AADM cohort, and predictive of type 2 diabetes in the country combined analysis compared to the European and multi-ethnic derived scores. Notably, participants in the 10<sup>th</sup> decile of this PRS had a 3.63-fold greater risk (OR 3.63; 95%CI (2.19 - 4.03), p = 2.79 x 10<sup>-17</sup>) per risk allele of developing diabetes and were diagnosed 2.6 years earlier compared to those in the first decile. </p> <p><b>Conclusions </b>African American derived PRS enhances polygenic prediction of type 2 diabetes in continental Africans. Improved representation of non-European populations (including Africans) in GWAS promises to provide better tools for precision medicine interventions in type 2 diabetes.</p>


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Tom G Richardson ◽  
Sean Harrison ◽  
Gibran Hemani ◽  
George Davey Smith

The age of large-scale genome-wide association studies (GWAS) has provided us with an unprecedented opportunity to evaluate the genetic liability of complex disease using polygenic risk scores (PRS). In this study, we have analysed 162 PRS (p<5×10−05) derived from GWAS and 551 heritable traits from the UK Biobank study (N = 334,398). Findings can be investigated using a web application (http:‌//‌mrcieu.‌mrsoftware.org/‌PRS‌_atlas/), which we envisage will help uncover both known and novel mechanisms which contribute towards disease susceptibility. To demonstrate this, we have investigated the results from a phenome-wide evaluation of schizophrenia genetic liability. Amongst findings were inverse associations with measures of cognitive function which extensive follow-up analyses using Mendelian randomization (MR) provided evidence of a causal relationship. We have also investigated the effect of multiple risk factors on disease using mediation and multivariable MR frameworks. Our atlas provides a resource for future endeavours seeking to unravel the causal determinants of complex disease.


2021 ◽  
Author(s):  
Tinashe Chikowore ◽  
Kenneth Ekoru ◽  
Marijana Vujkovic ◽  
Dipender Gill ◽  
Fraser Pirie ◽  
...  

AbstractObjectivePolygenic prediction of type 2 diabetes in continental Africans is adversely affected by the limited number of genome-wide association studies (GWAS) of type 2 diabetes from Africa, and the poor transferability of European derived polygenic risk scores (PRS) in diverse ethnicities. We set out to evaluate if African American or multi-ethnic derived PRSs would improve polygenic prediction in continental Africans.Research Design and MethodsUsing the PRSice software, ethnic-specific PRSs were computed with weights from the type 2 diabetes GWAS of the Million Veteran Program (MVP) study. The South African Zulu study (1602 cases and 976 controls) was used as the target data set. Replication and assessment of the best predictive PRS association with age at diagnosis was done in the Africa America Diabetes Mellitus (AADM) study (1031 cases and 738 controls).ResultsThe African American derived PRS was more predictive of type 2 diabetes compared to the European and multi-ethnic derived scores. Notably, participants in the 10th decile of this PRS had a 3.19-fold greater risk (OR 3.19; 95%CI (1.94-5.29), p = 5.33 x10-6) of developing diabetes and were diagnosed 2.6 years earlier compared to those in the first decile.ConclusionsAfrican American derived PRS enhances polygenic prediction of type 2 diabetes in continental Africans. Improved representation of non-Europeans populations (including Africans) in GWAS, promises to provide better tools for precision medicine interventions in type 2 diabetes.


2022 ◽  
Author(s):  
Tinashe Chikowore ◽  
Kenneth Ekoru ◽  
Marijana Vujkovic ◽  
Dipender Gill ◽  
Fraser Pirie ◽  
...  

<b>Objective. </b>Polygenic prediction of type 2 diabetes in<b> </b>continental Africans is adversely affected by the limited number of genome-wide association studies (GWAS) of type 2 diabetes from Africa and the poor transferability of European derived polygenic risk scores (PRS) in diverse ethnicities. We set out to evaluate if African American, European or multi-ethnic derived PRSs would improve polygenic prediction in continental Africans. <p><b>Research Design and Methods</b>. Using the PRSice software, ethnic-specific PRSs were computed with weights from the type 2 diabetes GWAS multi-ancestry meta-analysis of 228,499 cases and 1,178,783 controls. The South African Zulu study (1602 cases and 981 controls) was used as the target data set. Validation and assessment of the best predictive PRS association with age at diagnosis was done in the Africa America Diabetes Mellitus (AADM) study (2148 cases and 2161 controls).</p> <p> <b>Results. </b>The discriminatory ability of the African American and Multi-ethnic PRS were similar. However<b>, </b>the African American derived PRS was more transferable in all the countries represented in the AADM cohort, and predictive of type 2 diabetes in the country combined analysis compared to the European and multi-ethnic derived scores. Notably, participants in the 10<sup>th</sup> decile of this PRS had a 3.63-fold greater risk (OR 3.63; 95%CI (2.19 - 4.03), p = 2.79 x 10<sup>-17</sup>) per risk allele of developing diabetes and were diagnosed 2.6 years earlier compared to those in the first decile. </p> <p><b>Conclusions </b>African American derived PRS enhances polygenic prediction of type 2 diabetes in continental Africans. Improved representation of non-European populations (including Africans) in GWAS promises to provide better tools for precision medicine interventions in type 2 diabetes.</p>


Author(s):  
Niccolo’ Tesi ◽  
Sven J van der Lee ◽  
Marc Hulsman ◽  
Iris E Jansen ◽  
Najada Stringa ◽  
...  

Abstract Studying the genome of centenarians may give insights into the molecular mechanisms underlying extreme human longevity and the escape of age-related diseases. Here, we set out to construct polygenic risk scores (PRSs) for longevity and to investigate the functions of longevity-associated variants. Using a cohort of centenarians with maintained cognitive health (N = 343), a population-matched cohort of older adults from 5 cohorts (N = 2905), and summary statistics data from genome-wide association studies on parental longevity, we constructed a PRS including 330 variants that significantly discriminated between centenarians and older adults. This PRS was also associated with longer survival in an independent sample of younger individuals (p = .02), leading up to a 4-year difference in survival based on common genetic factors only. We show that this PRS was, in part, able to compensate for the deleterious effect of the APOE-ε4 allele. Using an integrative framework, we annotated the 330 variants included in this PRS by the genes they associate with. We find that they are enriched with genes associated with cellular differentiation, developmental processes, and cellular response to stress. Together, our results indicate that an extended human life span is, in part, the result of a constellation of variants each exerting small advantageous effects on aging-related biological mechanisms that maintain overall health and decrease the risk of age-related diseases.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ming-Kai Tsai ◽  
Hui-Min David Wang ◽  
Jeng-Chuan Shiang ◽  
I-Hung Chen ◽  
Chih-Chiang Wang ◽  
...  

Diabetes is a serious global health problem. Large-scale genome-wide association studies identified loci for type 2 diabetes mellitus (T2DM), including adiponectin (ADIPOQ) gene and transcription factor 7-like 2 (TCF7L2), but few studies clarified the effect of genetic polymorphisms ofADIPOQandTCF7L2on risk of T2DM. We attempted to elucidate association between T2DM and polymorphic variations of both in Taiwan’s Chinese Han population, with our retrospective case-control study genotyping single nucleotide polymorphisms (SNPs) inADIPOQandTCF7L2genes both in 149 T2DM patients and in 139 healthy controls from Taiwan. Statistical analysis gauged association of these polymorphisms with risk of T2DM to showADIPOQrs1501299 polymorphism variations strongly correlated with T2DM risk(P=0.042), with rs2241766 polymorphism being not associated with T2DM(P=0.967). However, both polymorphisms rs7903146 and rs12255372 ofTCF7L2were rarely detected in Taiwanese people. This study avers thatADIPOQrs1501299 polymorphism contributes to risk of T2DM in the Taiwanese population.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 1528-1528
Author(s):  
Heena Desai ◽  
Anh Le ◽  
Ryan Hausler ◽  
Shefali Verma ◽  
Anurag Verma ◽  
...  

1528 Background: The discovery of rare genetic variants associated with cancer have a tremendous impact on reducing cancer morbidity and mortality when identified; however, rare variants are found in less than 5% of cancer patients. Genome wide association studies (GWAS) have identified hundreds of common genetic variants significantly associated with a number of cancers, but the clinical utility of individual variants or a polygenic risk score (PRS) derived from multiple variants is still unclear. Methods: We tested the ability of polygenic risk score (PRS) models developed from genome-wide significant variants to differentiate cases versus controls in the Penn Medicine Biobank. Cases for 15 different cancers and cancer-free controls were identified using electronic health record billing codes for 11,524 European American and 5,994 African American individuals from the Penn Medicine Biobank. Results: The discriminatory ability of the 15 PRS models to distinguish their respective cancer cases versus controls ranged from 0.68-0.79 in European Americans and 0.74-0.93 in African Americans. Seven of the 15 cancer PRS trended towards an association with their cancer at a p<0.05 (Table), and PRS for prostate, thyroid and melanoma were significantly associated with their cancers at a bonferroni corrected p<0.003 with OR 1.3-1.6 in European Americans. Conclusions: Our data demonstrate that common variants with significant associations from GWAS studies can distinguish cancer cases versus controls for some cancers in an unselected biobank population. Given the small effects, future studies are needed to determine how best to incorporate PRS with other risk factors in the precision prediction of cancer risk. [Table: see text]


Sign in / Sign up

Export Citation Format

Share Document