scholarly journals Fragment-based ab initio phasing of peptidic nanocrystals by MicroED

2021 ◽  
Author(s):  
Logan Richards ◽  
Maria D Flores ◽  
Claudia Millan ◽  
Chih-Te Zee ◽  
Calina Glynn ◽  
...  

Microcrystal electron diffraction (MicroED) is transforming the visualization of molecules from nanocrystals, rendering their three-dimensional atomic structures from previously unamenable samples. Peptidic structures determined by MicroED include naturally occurring peptides, synthetic protein fragments and peptide-based natural products. However, as a diffraction method, MicroED is beholden to the phase problem, and its de novo determination of structures remains a challenge. ARCIMBOLDO, an automated, fragment-based approach to structure determination. It eliminates the need for atomic resolution, instead enforcing stereochemical constraints through libraries of small model fragments, and discerning congruent motifs in solution space to ensure validation. This approach expands the reach of MicroED to presently inaccessible peptidic structures including segments of human amyloids, and yeast and mammalian prions, and portends a more general phasing solution while limiting model bias for a wider set of chemical structures.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jun Li ◽  
Shi-Jie Chen

The three-dimensional (3D) structures of Ribonucleic acid (RNA) molecules are essential to understanding their various and important biological functions. However, experimental determination of the atomic structures is laborious and technically difficult. The large gap between the number of sequences and the experimentally determined structures enables the thriving development of computational approaches to modeling RNAs. However, computational methods based on all-atom simulations are intractable for large RNA systems, which demand long time simulations. Facing such a challenge, many coarse-grained (CG) models have been developed. Here, we provide a review of CG models for modeling RNA 3D structures, compare the performance of the different models, and offer insights into potential future developments.


2015 ◽  
Author(s):  
Tanmay A.M. Bharat ◽  
Sjors H.W. Scheres

Electron cryo-tomography (cryo-ET) and sub-tomogram averaging allow structure determination of macromolecules in situ, and are gaining in popularity for initial model generation for single- particle analysis. We describe herein, a protocol for sub-tomogram averaging from cryo-ET data using the RELION software. We describe how to calculate newly developed three-dimensional models for the contrast transfer function and the missing wedge of each sub-tomogram, and how to use these models for regularized-likelihood refinement. This approach has been implemented in the existing workflow for single-particle analysis, so that users may conveniently tap into existing capabilities of the RELION software. As example applications, we present analyses of purified hepatitis B capsid particles and S. cerevisiae 80S ribosomes. In both cases, we show that following initial classification, sub-tomogram averaging in RELION allows de novo generation of initial models, and provides high-resolution maps where secondary structure elements are resolved.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
C. J. D. Hetherington

Most high resolution images are not directly interpretable but must be compared with simulations based on model atomic structures and appropriate imaging conditions. Typically, the only parameters that are adjusted, in addition to the structure models, are crystal thickness and microscope defocus. Small tilts of the crystal away from the exact zone axis have only rarely been considered. It is shown here that, in the analysis of an image of a silicon twin intersection, the crystal tilt could be accurately estimated and satisfactorily included in the simulations.The micrograph shown in figure 1 was taken as part of an HREM study of indentation-induced hexagonal silicon. In this instance, the intersection of two twins on different habit planes has driven the silicon into hexagonal stacking. However, in order to confirm this observation, and in order to investigate other defects in the region, it has been necessary to simulate the image taking into account the very apparent crystal tilt. The inability to orientate the specimen at the exact [110] zone was influenced by i) the buckling of the specimen caused by strains at twin intersections, ii) the absence of Kikuchi lines or a clearly visible Laue circle in the diffraction pattern of the thin specimen and iii) the avoidance of radiation damage (which had marked effects on images taken a few minutes later following attempts to realign the crystal.) The direction of the crystal tilt was estimated by observing which of the {111} planes remained close to edge-on to the beam and hence strongly imaged. Further refinement of the direction and magnitude of the tilt was done by comparing simulated images to experimental images in a through-focal series. The presence of three different orientations of the silicon lattice aided the unambiguous determination of the tilt. The final estimate of a 0.8° tilt in the 200Å thick specimen gives atomic columns a projected width of about 3Å.


1980 ◽  
Vol 45 (8) ◽  
pp. 2364-2370 ◽  
Author(s):  
Antonín Holý ◽  
Erik De Clercq

Reaction of 3',5'-di-O-benzoyl-6-methyl-2'-deoxyuridine (IIa) with elementary bromine or iodine afforded 5-halogeno derivatives IIc and IId which on methanolysis gave 5-bromo-6-methyl-2'-deoxyurine (Ic) and 5-iodo-6-methyl-2'-deoxyurine (Id), respectively. The CD spectra of Ic, Id and 6-methyl-2'-deoxyuridine (Ia) are compared and discussed with regard to determination of the nucleoside conformation. Unlike 5-bromo- and 5-iodo-2'-deoxyuridine, the 6-methyl derivatives Ic and Id exhibit neither antibacterial nor antiviral activity. Nor do they exert any antimetabolic effect on the de novo DNA synthesis in primary rabbit kidney cells.


1995 ◽  
Vol 269 (2) ◽  
pp. E247-E252 ◽  
Author(s):  
H. O. Ajie ◽  
M. J. Connor ◽  
W. N. Lee ◽  
S. Bassilian ◽  
E. A. Bergner ◽  
...  

To determine the contributions of preexisting fatty acid, de novo synthesis, and chain elongation in long-chain fatty acid (LCFA) synthesis, the synthesis of LCFAs, palmitate (16:0), stearate (18:0), arachidate (20:0), behenate (22:0), and lignocerate (24:0), in the epidermis, liver, and spinal cord was determined using deuterated water and mass isotopomer distribution analysis in hairless mice and Sprague-Dawley rats. Animals were given 4% deuterated water for 5 days or 8 wk in their drinking water. Blood was withdrawn at the end of these times for the determination of deuterium enrichment, and the animals were killed to isolate the various tissues for lipid extraction for the determination of the mass isotopomer distributions. The mass isotopomer distributions in LCFA were incompatible with synthesis from a single pool of primer. The synthesis of palmitate, stearate, arachidate, behenate, and lignocerate followed the expected biochemical pathways for the synthesis of LCFAs. On average, three deuterium atoms were incorporated for every addition of an acetyl unit. The isotopomer distribution resulting from chain elongation and de novo synthesis can be described by the linear combination of two binomial distributions. The proportions of preexisting, chain elongation, and de novo-synthesized fatty acids as a percentage of the total fatty acids were determined using multiple linear regression analysis. Fractional synthesis was found to vary, depending on the tissue type and the fatty acid, from 47 to 87%. A substantial fraction (24-40%) of the newly synthesized molecules was derived from chain elongation of unlabeled (recycled) palmitate.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Surajit Bhattacharya ◽  
Hayk Barseghyan ◽  
Emmanuèle C. Délot ◽  
Eric Vilain

Abstract Background Whole genome sequencing is effective at identification of small variants, but because it is based on short reads, assessment of structural variants (SVs) is limited. The advent of Optical Genome Mapping (OGM), which utilizes long fluorescently labeled DNA molecules for de novo genome assembly and SV calling, has allowed for increased sensitivity and specificity in SV detection. However, compared to small variant annotation tools, OGM-based SV annotation software has seen little development, and currently available SV annotation tools do not provide sufficient information for determination of variant pathogenicity. Results We developed an R-based package, nanotatoR, which provides comprehensive annotation as a tool for SV classification. nanotatoR uses both external (DGV; DECIPHER; Bionano Genomics BNDB) and internal (user-defined) databases to estimate SV frequency. Human genome reference GRCh37/38-based BED files are used to annotate SVs with overlapping, upstream, and downstream genes. Overlap percentages and distances for nearest genes are calculated and can be used for filtration. A primary gene list is extracted from public databases based on the patient’s phenotype and used to filter genes overlapping SVs, providing the analyst with an easy way to prioritize variants. If available, expression of overlapping or nearby genes of interest is extracted (e.g. from an RNA-Seq dataset, allowing the user to assess the effects of SVs on the transcriptome). Most quality-control filtration parameters are customizable by the user. The output is given in an Excel file format, subdivided into multiple sheets based on SV type and inheritance pattern (INDELs, inversions, translocations, de novo, etc.). nanotatoR passed all quality and run time criteria of Bioconductor, where it was accepted in the April 2019 release. We evaluated nanotatoR’s annotation capabilities using publicly available reference datasets: the singleton sample NA12878, mapped with two types of enzyme labeling, and the NA24143 trio. nanotatoR was also able to accurately filter the known pathogenic variants in a cohort of patients with Duchenne Muscular Dystrophy for which we had previously demonstrated the diagnostic ability of OGM. Conclusions The extensive annotation enables users to rapidly identify potential pathogenic SVs, a critical step toward use of OGM in the clinical setting.


Sign in / Sign up

Export Citation Format

Share Document