Uterus-specific transcriptional regulation underlies eggshell pigment production in Japanese quail
The precursor of heme, protoporphyrin IX (PPIX), accumulates abundantly in the uterus of birds, such as Japanese quail, Coturnix japonica, resulting in brown-speckled eggshells. The molecular basis of PPIX production in the uterus remains largely unknown. Here, we investigated the cause of low PPIX production in a classical Japanese quail mutant exhibiting white eggshells by comparing its gene expression in the uterus with that of the wild type using transcriptome analysis and performed genetic linkage mapping to identify the causative genomic region of the white eggshell phenotype. We showed that 11 genes, including the 5-aminolevulinic acid synthase 1 (ALAS1) and ferroxidase hephaestin-like 1 (HEPHL1) genes, were specifically upregulated in the wild-type uterus and downregulated in the mutant. We mapped the 172 kb candidate genomic region on chromosome 6, which contains several genes, including a part of the paired-like homeodomain 3 (PITX3), which encodes a transcription factor. ALAS1, HEPHL1, and PITX3 were expressed in the apical cells of the luminal epithelium and lamina propria cells of the uterine mucosa of the wild-type quail, and their expression was downregulated in these cells of the mutant quail. Biochemical analysis using uterine homogenates indicated that the restricted availability of 5-aminolevulinic acid is the main cause of low PPIX production. These results suggest that uterus-specific transcriptional regulation of heme-biosynthesis-related genes is an evolutionarily acquired mechanism of eggshell pigment production in Japanese quail.