scholarly journals Identification and molecular characterization of a Chlamydomonas reinhardtii mutant that shows a light intensity dependent progressive chlorophyll deficiency

F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 142
Author(s):  
Phillip B Grovenstein ◽  
Darryel A Wilson ◽  
Kathryn D Lankford ◽  
Kelsey A Gaston ◽  
Surangi Perera ◽  
...  

The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study all aspects of oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in energy metabolism in photosynthetic organisms. These tetrapyrroles are synthesized via a common branched pathway that involves mainly nuclear encoded enzymes. One of the enzymes in the pathway is Mg chelatase (MgChel) which inserts Mg2+ into protoporphyrin IX (PPIX, proto) to form Magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. The GUN4 (genomes uncoupled 4) protein is not essential for the MgChel activity but has been shown to significantly stimulate its activity. We have isolated a light sensitive mutant, 6F14, by random DNA insertional mutagenesis. 6F14 cannot tolerate light intensities higher than 90-100 μmol photons m-2 s-1. It shows a light intensity dependent progressive photo-bleaching. 6F14 is incapable of photo-autotrophic growth under light intensity higher than 100 μmol photons m-2 s-1. PCR based analyses show that in 6F14 the insertion of the plasmid outside the GUN4 locus has resulted in a genetic rearrangement of the GUN4 gene and possible deletions in the genomic region flanking the GUN4 gene. Our gun4 mutant has a Chl content very similar to that in the wild type in the dark and is very sensitive to fluctuations in the light intensity in the environment unlike the earlier identified Chlamydomonas gun4 mutant. Complementation with a functional copy of the GUN4 gene restored light tolerance, Chl biosynthesis and photo-autotrophic growth under high light intensities in 6F14. 6F14 is the second gun4 mutant to be identified in C. reinhardtii. Additionally, we show that our two gun4 complements over-express the GUN4 protein and show a higher Chl content per cell compared to that in the wild type strain.

F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 142
Author(s):  
Phillip B Grovenstein ◽  
Darryel A Wilson ◽  
Kathryn D Lankford ◽  
Kelsey A Gaston ◽  
Surangi Perera ◽  
...  

The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in photosynthesis and respiration. These tetrapyrroles are synthesized via a common branched pathway that involves mainly enzymes, encoded by nuclear genes. One of the enzymes in the pathway is Mg chelatase (MgChel). MgChel catalyzes insertion of Mg2+ into protoporphyrin IX (PPIX, proto) to form Magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. The GUN4 (genomes uncoupled 4) protein is not essential for the MgChel activity but has been shown to significantly stimulate its activity. We have isolated a light sensitive mutant, 6F14, by random DNA insertional mutagenesis. 6F14 cannot tolerate light intensities higher than 90-100 μmol photons m-2 s-1. It shows a light intensity dependent progressive photo-bleaching. 6F14 is incapable of photo-autotrophic growth under light intensity higher than 100 μmol photons m-2 s-1. PCR based analyses show that in 6F14 the insertion of the plasmid outside the GUN4 locus has resulted in a genetic rearrangement of the GUN4 gene and possible deletions in the genomic region flanking the GUN4 gene. Our gun4 mutant has a Chl content very similar to that in the wild type in the dark and is very sensitive to fluctuations in the light intensity in the environment unlike the earlier identified Chlamydomonas gun4 mutant. Complementation with a functional copy of the GUN4 gene restored light tolerance, Chl biosynthesis and photo-autotrophic growth under high light intensities in 6F14. 6F14 is the second gun4 mutant to be identified in C. reinhardtii. Additionally, we show that our two gun4 complements over-express the GUN4 protein and show a higher Chl content per cell compared to that in the wild type strain.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 138 ◽  
Author(s):  
Phillip B Grovenstein ◽  
Darryel A Wilson ◽  
Cameron G Lennox ◽  
Katherine P Smith ◽  
Alisha A Contractor ◽  
...  

The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study all aspects of oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in energy metabolism in photosynthetic organisms and are synthesized via a common branched tetrapyrrole biosynthetic pathway. One of the enzymes in the pathway is Mg chelatase (MgChel) which inserts Mg2+ into protoporphyrin IX (PPIX, proto) to form magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. MgChel is a multimeric enzyme that consists of three subunits designated CHLD, CHLI and CHLH. Plants have two isozymes of CHLI (CHLI1 and CHLI2) which are 70%-81% identical in protein sequences. Although the functional role of CHLI1 is well characterized, that of CHLI2 is not. We have isolated a non-photosynthetic light sensitive mutant 5A7 by random DNA insertional mutagenesis that is devoid of any detectable Chl. PCR based analyses show that 5A7 is missing the CHLI1 gene and at least eight additional functionally uncharacterized genes. 5A7 has an intact CHLI2 gene. Complementation with a functional copy of the CHLI1 gene restored Chl biosynthesis, photo-autotrophic growth and light tolerance in 5A7. We have identified the first chli1 mutant of Chlamydomonas reinhardtii and in green algae. Our results show that in the wild type Chlamydomonas CHLI2 protein amount is lower than that of CHLI1 and the chli1 mutant has a drastic reduction in CHLI2 protein levels although it possesses the CHLI2 gene. Our chli1 mutant opens up new avenues to explore the functional roles of CHLI1 and CHLI2 in Chl biosynthesis and chloroplast to nucleus retrograde signaling in Chlamydomonas, which has never been studied before.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 138
Author(s):  
Phillip B Grovenstein ◽  
Darryel A Wilson ◽  
Cameron G Lennox ◽  
Katherine P Smith ◽  
Alisha A Contractor ◽  
...  

The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study all aspects of oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in energy metabolism in photosynthetic organisms and are synthesized via a common branched tetrapyrrole biosynthetic pathway. One of the enzymes in the pathway is Mg chelatase (MgChel) which inserts Mg2+ into protoporphyrin IX (PPIX, proto) to form magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. MgChel is a multimeric enzyme that consists of three subunits designated CHLD, CHLI and CHLH. Plants have two isozymes of CHLI (CHLI1 and CHLI2) which are 70%-81% identical in protein sequences. Although the functional role of CHLI1 is well characterized, that of CHLI2 is not. We have isolated a non-photosynthetic light sensitive mutant 5A7 by random DNA insertional mutagenesis that is devoid of any detectable Chl. PCR based analyses show that 5A7 is missing the CHLI1 gene and at least eight additional functionally uncharacterized genes. 5A7 has an intact CHLI2 gene. Complementation with a functional copy of the CHLI1 gene restored Chl biosynthesis, photo-autotrophic growth and light tolerance in 5A7. We have identified the first chli1 (chli1-1) mutant of Chlamydomonas reinhardtii and in green algae. Our results show that in the wild type Chlamydomonas CHLI2 protein amount is lower than that of CHLI1 and the chli1-1 mutant has a drastic reduction in CHLI2 protein levels although it possesses the CHLI2 gene. Our chli1-1 mutant opens up new avenues to explore the functional roles of CHLI1 and CHLI2 in Chl biosynthesis in Chlamydomonas, which has never been studied before.


2021 ◽  
Author(s):  
Satoshi Ishishita ◽  
Shumpei Kitahara ◽  
Mayuko Takahashi ◽  
Sakura Iwasaki ◽  
Shoji Tatsumoto ◽  
...  

The precursor of heme, protoporphyrin IX (PPIX), accumulates abundantly in the uterus of birds, such as Japanese quail, Coturnix japonica, resulting in brown-speckled eggshells. The molecular basis of PPIX production in the uterus remains largely unknown. Here, we investigated the cause of low PPIX production in a classical Japanese quail mutant exhibiting white eggshells by comparing its gene expression in the uterus with that of the wild type using transcriptome analysis and performed genetic linkage mapping to identify the causative genomic region of the white eggshell phenotype. We showed that 11 genes, including the 5-aminolevulinic acid synthase 1 (ALAS1) and ferroxidase hephaestin-like 1 (HEPHL1) genes, were specifically upregulated in the wild-type uterus and downregulated in the mutant. We mapped the 172 kb candidate genomic region on chromosome 6, which contains several genes, including a part of the paired-like homeodomain 3 (PITX3), which encodes a transcription factor. ALAS1, HEPHL1, and PITX3 were expressed in the apical cells of the luminal epithelium and lamina propria cells of the uterine mucosa of the wild-type quail, and their expression was downregulated in these cells of the mutant quail. Biochemical analysis using uterine homogenates indicated that the restricted availability of 5-aminolevulinic acid is the main cause of low PPIX production. These results suggest that uterus-specific transcriptional regulation of heme-biosynthesis-related genes is an evolutionarily acquired mechanism of eggshell pigment production in Japanese quail.


2004 ◽  
Vol 186 (12) ◽  
pp. 3991-3999 ◽  
Author(s):  
E. Pojidaeva ◽  
V. Zinchenko ◽  
S. V. Shestakov ◽  
A. Sokolenko

ABSTRACT The sll1703 gene, encoding an Arabidopsis homologue of the thylakoid membrane-associated SppA peptidase, was inactivated by interposon mutagenesis in Synechocystis sp. strain PCC 6803. Upon acclimation from a light intensity of 50 to 150 μE m−2 s−1, the mutant preserved most of its phycobilisome content, whereas the wild-type strain developed a bleaching phenotype due to the loss of about 40% of its phycobiliproteins. Using in vivo and in vitro experiments, we demonstrate that the ΔsppA1 strain does not undergo the cleavage of the LR 33 and LCM 99 linker proteins that develops in the wild type exposed to increasing light intensities. We conclude that a major contribution to light acclimation under a moderate light regime in cyanobacteria originates from an SppA1-mediated cleavage of phycobilisome linker proteins. Together with changes in gene expression of the major phycobiliproteins, it contributes an additional mechanism aimed at reducing the content in phycobilisome antennae upon acclimation to a higher light intensity.


Author(s):  
Elena Martín-Clemente ◽  
Ignacio J. Melero-Jiménez ◽  
Elena Bañares-España ◽  
Antonio Flores-Moya ◽  
María J. García-Sánchez

AbstractSulphide is proposed to have influenced the evolution of primary stages of oxygenic photosynthesis in cyanobacteria. However, sulphide is toxic to most of the species of this phylum, except for some sulphide-tolerant species showing various sulphide-resistance mechanisms. In a previous study, we found that this tolerance can be induced by environmental sulphidic conditions, in which two experimentally derived strains with an enhanced tolerance to sulphide were obtained from Microcystis aeruginosa, a sensitive species, and Oscillatoria, a sulphide-tolerant genus. We have now analysed the photosynthetic performance of the wild-type and derived strains in the presence of sulphide to shed light on the characteristics underlying the increased tolerance. We checked whether the sulphide tolerance was a result of higher PSII sulphide resistance and/or the induction of sulphide-dependent anoxygenic photosynthesis. We observed that growth, maximum quantum yield, maximum electron transport rate and photosynthetic efficiency in the presence of sulphide were less affected in the derived strains compared to their wild-type counterparts. Nevertheless, in 14C photoincoporation assays, neither Oscillatoria nor M. aeruginosa exhibited anoxygenic photosynthesis using sulphide as an electron donor. On the other hand, the content of photosynthetic pigments in the derived strains was different to that observed in the wild-type strains. Thus, an enhanced PSII sulphide resistance appears to be behind the increased sulphide tolerance displayed by the experimentally derived strains, as observed in most natural sulphide-tolerant cyanobacterial strains. However, other changes in the photosynthetic machinery cannot be excluded.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathaphon Yu King Hing ◽  
Uma K. Aryal ◽  
John A. Morgan

Photoautotrophic microorganisms are increasingly explored for the conversion of atmospheric carbon dioxide into biomass and valuable products. The Calvin-Benson-Bassham (CBB) cycle is the primary metabolic pathway for net CO2 fixation within oxygenic photosynthetic organisms. The cyanobacteria, Synechocystis sp. PCC 6803, is a model organism for the study of photosynthesis and a platform for many metabolic engineering efforts. The CBB cycle is regulated by complex mechanisms including enzymatic abundance, intracellular metabolite concentrations, energetic cofactors and post-translational enzymatic modifications that depend on the external conditions such as the intensity and quality of light. However, the extent to which each of these mechanisms play a role under different light intensities remains unclear. In this work, we conducted non-targeted proteomics in tandem with isotopically non-stationary metabolic flux analysis (INST-MFA) at four different light intensities to determine the extent to which fluxes within the CBB cycle are controlled by enzymatic abundance. The correlation between specific enzyme abundances and their corresponding reaction fluxes is examined, revealing several enzymes with uncorrelated enzyme abundance and their corresponding flux, suggesting flux regulation by mechanisms other than enzyme abundance. Additionally, the kinetics of 13C labeling of CBB cycle intermediates and estimated inactive pool sizes varied significantly as a function of light intensity suggesting the presence of metabolite channeling, an additional method of flux regulation. These results highlight the importance of the diverse methods of regulation of CBB enzyme activity as a function of light intensity, and highlights the importance of considering these effects in future kinetic models.


1981 ◽  
Vol 36 (5-6) ◽  
pp. 450-454
Author(s):  
Ryuichi Ishii ◽  
Georg H. Schmid

Abstract The Kok effect of photosynthesis was investigated in different tobacco mutants. It was found that the breaks in the light intensity curve were always at or around 1000 lux in all plants tested regardless of the unit sizes which differed by a factor of 10. It was concluded that the photo­ receptor responsible for the effect must be present in the wild type and the chlorophyll deficient mutants in the same amount and is probably not chlorophyll. Due to the fact that the light dependency of the Hill reaction in isolated tobacco chloroplasts also shows a break at or around the “Kok intensity” it was concluded that probably a structural change of the photochemical apparatus around 1000 lux contributes to the effect. Measurement of 180 2-uptake by mass spectrometry at low light intensity shows at low CO2-concentration an enhancement of 180 2-uptake again at/around 1000 lux indicating that photorespiration starts to function at the “Kok intensity”. Due to the fact that 180 2-uptake remains constant at high CO2-concentrations the break in the photosynthetic light intensity curve cannot be due to an inhibition of “dark respiration” at low light intensities.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Koumei Yazaki ◽  
Chinatsu Yoshikoshi ◽  
Satoru Oshiro ◽  
Sumino Yanase

Astaxanthin (AX), which is produced by some marine animals, is a type of carotenoid that has antioxidative properties. In this study, we initially examined the effects of AX on the aging of a model organismC. elegansthat has the conserved intracellular pathways related to mammalian longevity. The continuous treatments with AX (0.1 to 1 mM) from both the prereproductive and young adult stages extended the mean lifespans by about 16–30% in the wild-type and long-lived mutantage-1ofC. elegans. In contrast, the AX-dependent lifespan extension was not observed even in adaf-16null mutant. Especially, the expression of genes encoding superoxide dismutases and catalases increased in two weeks after hatching, and the DAF-16 protein was translocated to the nucleus in the AX-exposed wild type. These results suggest that AX protects the cell organelle mitochondria and nucleus of the nematode, resulting in a lifespan extension via an Ins/IGF-1 signaling pathway during normal aging, at least in part.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 228
Author(s):  
Yong Fan ◽  
Xiao-Ting Ding ◽  
Li-Juan Wang ◽  
Er-Ying Jiang ◽  
Phung Nghi Van ◽  
...  

Fucoxanthin, which is widely found in seaweeds and diatoms, has many benefits to human health, such as anti-diabetes, anti-obesity, and anti-inflammatory physiological activities. However, the low content of fucoxanthin in brown algae and diatoms limits the commercialization of this product. In this study, we introduced an excitation light at 488 nm to analyze the emitted fluorescence of Phaeodactylum tricornutum, a diatom model organism rich in fucoxanthin. We observed a unique spectrum peak at 710 nm and found a linear correlation between fucoxanthin content and the mean fluorescence intensity. We subsequently used flow cytometry to screen high-fucoxanthin-content mutants created by heavy ion irradiation. After 20 days of cultivation, the fucoxanthin content of sorted cells was 25.5% higher than in the wild type. This method provides an efficient, rapid, and high-throughput approach to screen fucoxanthin-overproducing mutants.


Sign in / Sign up

Export Citation Format

Share Document