scholarly journals A histidine cluster determines YY1-compartmentalized coactivators and chromatin elements in phase-separated super-enhancers

2021 ◽  
Author(s):  
Wenmeng Wang ◽  
Shiyao Qiao ◽  
Guangyue Li ◽  
Cuicui Yang ◽  
Chen Zhong ◽  
...  

As an oncogenic transcription factor, Yin Yang 1 (YY1) regulates enhancer and promoter connection. However, gaps still exist in understanding how YY1 coordinates coactivators and chromatin elements to assemble super-enhancers. Here, we demonstrate that YY1 activates FOXM1 gene expression through forming liquid-liquid phase separation to compartmentalize both coactivators and enhancer elements. In the transactivation domain of YY1, a histidine cluster is essential for its activities of forming phase separation, which can be extended to additional proteins. Coactivators EP300, BRD4, MED1 and active RNA polymerase II are components of YY1-rich nuclear puncta. Consistently, histone markers for gene activation, but not repression, colocalize with YY1. Importantly, multiple enhancer elements and the FOXM1 promoter are bridged by YY1 to form super-enhancers. These studies propose that YY1 is a general transcriptional activator, and promotes phase separation with incorporation of major coactivators and stabilization by distal enhancers to activate target gene expression.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009039
Author(s):  
Yi Kuang ◽  
Anna Pyo ◽  
Natanel Eafergan ◽  
Brittany Cain ◽  
Lisa M. Gutzwiller ◽  
...  

Notch signaling controls many developmental processes by regulating gene expression. Notch-dependent enhancers recruit activation complexes consisting of the Notch intracellular domain, the Cbf/Su(H)/Lag1 (CSL) transcription factor (TF), and the Mastermind co-factor via two types of DNA sites: monomeric CSL sites and cooperative dimer sites called Su(H) paired sites (SPS). Intriguingly, the CSL TF can also bind co-repressors to negatively regulate transcription via these same sites. Here, we tested how synthetic enhancers with monomeric CSL sites versus dimeric SPSs bind Drosophila Su(H) complexes in vitro and mediate transcriptional outcomes in vivo. Our findings reveal that while the Su(H)/Hairless co-repressor complex similarly binds SPS and CSL sites in an additive manner, the Notch activation complex binds SPSs, but not CSL sites, in a cooperative manner. Moreover, transgenic reporters with SPSs mediate stronger, more consistent transcription and are more resistant to increased Hairless co-repressor expression compared to reporters with the same number of CSL sites. These findings support a model in which SPS containing enhancers preferentially recruit cooperative Notch activation complexes over Hairless repression complexes to ensure consistent target gene activation.


2018 ◽  
Author(s):  
Danfeng Cai ◽  
Daniel Feliciano ◽  
Peng Dong ◽  
Eduardo Flores ◽  
Martin Gruebele ◽  
...  

Yes-associated Protein (YAP) is a transcriptional co-activator that regulates cell proliferation and survival by binding to a selective set of enhancers for potent target gene activation, but how YAP coordinates these transcriptional responses is unknown. Here, we demonstrate that YAP forms liquid-like condensates in the nucleus in response to macromolecular crowding. Formed within seconds of hyperosmotic stress, YAP condensates compartmentalized YAP’s DNA binding cofactor TEAD1 along with other YAP-related transcription co-activators, including TAZ, and subsequently induced transcription of YAP-specific proliferation genes. Super-resolution imaging using Assay for Transposase Accessible Chromatin with photoactivated localization microscopy (ATAC-PALM) revealed that YAP nuclear condensates were areas enriched in accessible chromatin domains organized as super-enhancers. Initially devoid of RNA Polymerase II (Pol II), the accessible chromatin domains later acquired Pol II, producing newly transcribed RNA. Removal of YAP’s intrinsically-disordered transcription activation domain (TAD) prevented YAP condensate formation and diminished downstream YAP signaling. Thus, dynamic changes in genome organization and gene activation during YAP reprogramming is mediated by liquid-liquid phase separation.


2021 ◽  
Vol 134 (17) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Izzy Owen is first author on ‘ The oncogenic transcription factor FUS-CHOP can undergo nuclear liquid–liquid phase separation’, published in JCS. Izzy is a PhD student in the lab of Frank Shewmaker at Uniformed Services University of the Health Sciences, Bethesda, USA, where her research interests involve understanding protein phase separation at the molecular and functional levels in disease.


2020 ◽  
Author(s):  
Yi Kuang ◽  
Anna Pyo ◽  
Natanel Eafergan ◽  
Brittany Cain ◽  
Lisa M. Gutzwiller ◽  
...  

AbstractNotch signaling controls many developmental processes by regulating gene expression. Notch-dependent enhancers recruit activation complexes consisting of the Notch intracellular domain, the Cbf/Su(H)/Lag1 (CSL) transcription factor (TF), and the Mastermind co-factor via two types of DNA sites: monomeric CSL sites and cooperative dimer sites called Su(H) paired sites (SPS). Intriguingly, the CSL TF can also bind co-repressors to negatively regulate transcription via these same sites. Here, we tested how enhancers with monomeric CSL sites versus dimeric SPSs bind Drosophila Su(H) complexes in vitro and mediate transcriptional outcomes in vivo. Our findings reveal that while the Su(H)/Hairless co-repressor complex similarly binds SPS and CSL sites in an additive manner, the Notch activation complex binds SPSs, but not CSL sites, in a cooperative manner. Moreover, transgenic reporters with SPSs mediate stronger, more consistent transcription and are more resistant to increased Hairless co-repressor expression compared to reporters with the same number of CSL sites. These findings support a model in which SPS containing enhancers preferentially recruit cooperative Notch activation complexes over Hairless repression complexes to ensure consistent target gene activation.


2000 ◽  
Vol 20 (12) ◽  
pp. 4320-4327 ◽  
Author(s):  
Keyong Du ◽  
Hiroshi Asahara ◽  
Ulupi S. Jhala ◽  
Brandee L. Wagner ◽  
Marc Montminy

ABSTRACT The cyclic AMP (cAMP)-responsive factor CREB promotes cellular gene expression, following its phosphorylation at Ser133, via recruitment of the coactivator paralogs CREB-binding protein (CBP) and p300. CBP and p300, in turn, appear to mediate target gene induction via their association with RNA polymerase II complexes and via intrinsic histone acetyltransferase activities that mobilize promoter-bound nucleosomes. In addition to cAMP, a wide variety of stimuli, including hypoxia, UV irradiation, and growth factor addition, induce Ser133 phosphorylation with stoichiometry and kinetics comparable to those induced by cAMP. Yet a number of these signals are incapable of promoting target gene activation via CREB phosphorylation per se, suggesting the presence of additional regulatory events either at the level of CREB-CBP complex formation or in the subsequent recruitment of the transcriptional apparatus. Here we characterize a Tyr134Phe CREB mutant that behaves as a constitutive activator in vivo. Like protein kinase A (PKA)-stimulated wild-type CREB, the Tyr134Phe polypeptide was found to stimulate target gene expression via the Ser133-dependent recruitment of CBP and p300. Biochemical studies reveal that mutation of Tyr134 to Phe lowers the Km for PKA phosphorylation and thereby induces high levels of constitutive Ser133 phosphorylation in vivo. Consistent with its constitutive activity, Tyr134Phe CREB strongly promoted differentiation of PC12 cells in concert with suboptimal doses of nerve growth factor. Taken together, these results demonstrate that Ser133 phosphorylation is sufficient for cellular gene activation and that additional signal-dependent modifications of CBP or p300 are not required for recruitment of the transcriptional apparatus to the promoter.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ian Edward Gentle ◽  
Isabel Moelter ◽  
Mohamed Tarek Badr ◽  
Konstanze Döhner ◽  
Michael Lübbert ◽  
...  

AbstractMutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.


2009 ◽  
Vol 29 (18) ◽  
pp. 4949-4958 ◽  
Author(s):  
Stephanie J. Ellison-Zelski ◽  
Natalia M. Solodin ◽  
Elaine T. Alarid

ABSTRACT Gene expression results from the coordinated actions of transcription factor proteins and coregulators. Estrogen receptor alpha (ERα) is a ligand-activated transcription factor that can both activate and repress the expression of genes. Activation of transcription by estrogen-bound ERα has been studied in detail, as has antagonist-induced repression, such as that which occurs by tamoxifen. How estrogen-bound ERα represses gene transcription remains unclear. In this report, we identify a new mechanism of estrogen-induced transcriptional repression by using the ERα gene, ESR1. Upon estrogen treatment, ERα is recruited to two sites on ESR1, one distal (ENH1) and the other at the proximal (A) promoter. Coactivator proteins, namely, p300 and AIB1, are found at both ERα-binding sites. However, recruitment of the Sin3A repressor, loss of RNA polymerase II, and changes in histone modifications occur only at the A promoter. Reduction of Sin3A expression by RNA interference specifically inhibits estrogen-induced repression of ESR1. Furthermore, an estrogen-responsive interaction between Sin3A and ERα is identified. These data support a model of repression wherein actions of ERα and Sin3A at the proximal promoter can overcome activating signals at distal or proximal sites and ultimately decrease gene expression.


2017 ◽  
Vol 57 (4) ◽  
pp. 192-202 ◽  
Author(s):  
Lila E. Mullany ◽  
Jennifer S. Herrick ◽  
Roger K. Wolff ◽  
John R. Stevens ◽  
Wade Samowitz ◽  
...  

1991 ◽  
Vol 11 (3) ◽  
pp. 1306-1312 ◽  
Author(s):  
G A Gonzalez ◽  
P Menzel ◽  
J Leonard ◽  
W H Fischer ◽  
M R Montminy

Cyclic AMP mediates the hormonal stimulation of a number of eukaryotic genes by directing the protein kinase A (PK-A)-dependent phosphorylation of transcription factor CREB. We have previously determined that although phosphorylation at Ser-133 is critical for induction, this site does not appear to participate directly in transactivation. To test the hypothesis that CREB ultimately activates transcription through domains that are distinct from the PK-A site, we constructed a series of CREB mutants and evaluated them by transient assays in F9 teratocarcinoma cells. Remarkably, a glutamine-rich region near the N terminus appeared to be important for PK-A-mediated induction of CREB since removal of this domain caused a marked reduction in CREB activity. A second region consisting of a short acidic motif (DLSSD) C terminal to the PK-A site also appeared to synergize with the phosphorylation motif to permit transcriptional activation. Biochemical experiments with purified recombinant CREB protein further demonstrate that the transactivation domain is more sensitive to trypsin digestion than are the DNA-binding and dimerization domains, suggesting that the activator region may be structured to permit interactions with other proteins in the RNA polymerase II complex.


Sign in / Sign up

Export Citation Format

Share Document