scholarly journals Mechanism of the CBM35 domain in assisting catalysis by Ape1, a Campylobacter jejuni O-acetyl esterase

2021 ◽  
Author(s):  
Chang Sheng-Huei Lin ◽  
Ian Y. Yen ◽  
Anson C. K. Chan ◽  
Michael E. P. Murphy

AbstractPeptidoglycan (PG) is O-acetylated by bacteria to resist killing by host lysozyme. During PG turnover, however, deacetylation is a prerequisite for glycan strand hydrolysis by lytic transglycosylases. Ape1, a de-O-acetylase from Campylobacter jejuni, is a bi-modular protein composed of an SGNH hydrolase domain and a CBM35 domain. The conserved Asp-His-Ser catalytic triad in the SGNH hydrolase domain confers enzymatic activity. The PG binding mode and function of the CBM35 domain in de-O-acetylation remained unclear. In this paper, we present a 1.8 Å resolution crystal structure of a complex between acetate and Ape1. An active site cleft is formed at the interface of the two domains and two large loops from the CBM35 domain form part of the active site. Site-directed mutagenesis of residues in these loops coupled with activity assays using p-nitrophenol acetate indicate the CBM35 loops are required for full catalytic efficiency. Molecular docking of a model O-acetylated hexasaccharide PG substrate to Ape1 using HADDOCK suggests the interaction is formed by the active cleft and the saccharide motif of PG. Together, we propose that the active cleft of Ape1 diverges from other SGNH hydrolase members by using the CBM35 loops to assist catalysis. The concave Ape1 active cleft may accommodate the long glycan strands for selecting PG substrates to regulate subsequent biological events.

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
A.E. Naas ◽  
A.K. MacKenzie ◽  
B. Dalhus ◽  
V.G.H. Eijsink ◽  
P.B. Pope

Abstract Previous gene-centric analysis of a cow rumen metagenome revealed the first potentially cellulolytic polysaccharide utilization locus, of which the main catalytic enzyme (AC2aCel5A) was identified as a glycoside hydrolase (GH) family 5 endo-cellulase. Here we present the 1.8 Å three-dimensional structure of AC2aCel5A and characterization of its enzymatic activities. The enzyme possesses the archetypical (β/α)8-barrel found throughout the GH5 family and contains the two strictly conserved catalytic glutamates located at the C-terminal ends of β-strands 4 and 7. The enzyme is active on insoluble cellulose and acts exclusively on linear β-(1,4)-linked glucans. Co-crystallization of a catalytically inactive mutant with substrate yielded a 2.4 Å structure showing cellotriose bound in the −3 to −1 subsites. Additional electron density was observed between Trp178 and Trp254, two residues that form a hydrophobic “clamp”, potentially interacting with sugars at the +1 and +2 subsites. The enzyme’s active-site cleft was narrower compared to the closest structural relatives, which in contrast to AC2aCel5A, are also active on xylans, mannans and/or xyloglucans. Interestingly, the structure and function of this enzyme seem adapted to less-substituted substrates such as cellulose, presumably due to the insufficient space to accommodate the side-chains of branched glucans in the active-site cleft.


2018 ◽  
Vol 399 (10) ◽  
pp. 1223-1235 ◽  
Author(s):  
Andreas Porodko ◽  
Ana Cirnski ◽  
Drazen Petrov ◽  
Teresa Raab ◽  
Melanie Paireder ◽  
...  

Abstract The genome of the model plant Arabidopsis thaliana encodes three paralogues of the papain-like cysteine proteinase cathepsin B (AtCathB1, AtCathB2 and AtCathB3), whose individual functions are still largely unknown. Here we show that a mutated splice site causes severe truncations of the AtCathB1 polypeptide, rendering it catalytically incompetent. By contrast, AtCathB2 and AtCathB3 are effective proteases which display comparable hydrolytic properties and share most of their substrate specificities. Site-directed mutagenesis experiments demonstrated that a single amino acid substitution (Gly336→Glu) is sufficient to confer AtCathB2 with the capacity to tolerate arginine in its specificity-determining S2 subsite, which is otherwise a hallmark of AtCathB3-mediated cleavages. A degradomics approach utilizing proteome-derived peptide libraries revealed that both enzymes are capable of acting as endopeptidases and exopeptidases, releasing dipeptides from the C-termini of substrates. Mutation of the carboxydipeptidase determinant His207 also affected the activity of AtCathB2 towards non-exopeptidase substrates, highlighting mechanistic differences between plant and human cathepsin B. This was also noted in molecular modeling studies which indicate that the occluding loop defining the dual enzymatic character of cathepsin B does not obstruct the active-site cleft of AtCathB2 to the same extent as in its mammalian orthologues.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Sara Pintar ◽  
Jure Borišek ◽  
Aleksandra Usenik ◽  
Andrej Perdih ◽  
Dušan Turk

AbstractTo achieve productive binding, enzymes and substrates must align their geometries to complement each other along an entire substrate binding site, which may require enzyme flexibility. In pursuit of novel drug targets for the human pathogen S. aureus, we studied peptidoglycan N-acetylglucosaminidases, whose structures are composed of two domains forming a V-shaped active site cleft. Combined insights from crystal structures supported by site-directed mutagenesis, modeling, and molecular dynamics enabled us to elucidate the substrate binding mechanism of SagB and AtlA-gl. This mechanism requires domain sliding from the open form observed in their crystal structures, leading to polysaccharide substrate binding in the closed form, which can enzymatically process the bound substrate. We suggest that these two hydrolases must exhibit unusual extents of flexibility to cleave the rigid structure of a bacterial cell wall.


2007 ◽  
Vol 189 (12) ◽  
pp. 4456-4464 ◽  
Author(s):  
Dominique Vidal-Ingigliardi ◽  
Shawn Lewenza ◽  
Nienke Buddelmeijer

ABSTRACT Apolipoprotein N-acyl transferase (Lnt) is an essential membrane-bound protein involved in lipid modification of all lipoproteins in gram-negative bacteria. Essential residues in Lnt of Escherichia coli were identified by using site-directed mutagenesis and an in vivo complementation assay. Based on sequence conservation and known protein structures, we predict a model for Lnt, which is a member of the CN hydrolase family. Besides the potential catalytic triad E267-K335-C387, four residues that directly affect the modification of Braun's lipoprotein Lpp are absolutely required for Lnt function. Residues Y388 and E389 are part of the hydrophobic pocket that constitutes the active site. Residues W237 and E343 are located on two flexible arms that face away from the active site and are expected to open and close upon the binding and release of phospholipid and/or apolipoprotein. Substitutions causing temperature-dependent effects were located at different positions in the structural model. These mutants were not affected in protein stability. Lnt proteins from other proteobacteria, but not from actinomycetes, were functional in vivo, and the essential residues identified in Lnt of E. coli are conserved in these proteins.


2016 ◽  
Vol 42 (2) ◽  
Author(s):  
Hasnain Hussain ◽  
Nikson Fatt Ming Chong

AbstractObjective:Restoration of catalytic activity of Isa2 fromMethods:The six conserved amino acid residues absent in the Stisa2 gene were restored by mutation using the overlap extension PCR and the asymmetrical overlap extension PCR methods. Next, mutant Stisa2 with restored catalytic residues was expressed inResults:Both qualitative and quantitative analysis showed that the restoration of the conserved residues in the catalytic site did not restore starch debranching activity. Molecular modeling showed greater than expected distances between the catalytic triad in mutant Stisa2. These additional distances are likely to prevent hydrogen bonding which stabilizes the reaction intermediate, and are critical for catalytic activity.Conclusions:These results suggest that during evolution, mutations in other highly conserved regions have caused significant changes to the structure and function of the catalytic network. Catalytically inactive Isa2, which is conserved in starch-producing plants, has evolved important non-catalytic roles such as in substrate binding and in regulating isoamylase activity.


FEBS Letters ◽  
1992 ◽  
Vol 309 (3) ◽  
pp. 421-423 ◽  
Author(s):  
Nathalie Duval ◽  
Suzanne Bon ◽  
Israel Silman ◽  
Joel Sussman ◽  
Jean Massoulié

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-17-SCI-17
Author(s):  
Peter J. Lenting

Many natural enzymes need the assistance of protein cofactors to catalyze chemical reactions at a physiologically relevant speed and several of the enzymes that make up for the coagulation cascade are no exception in this regard. Notably, activated factors VII, IX and X display relatively poor enzymatic activity towards their respective macromolecular substrates. The reason for their low proteolytic activity originates from a number of structural restrictions. For instance, not all enzymes are capable to efficiently fold their new amino-terminus into the active site pocket, leaving the catalytic triad immature. Furthermore, serine protease activation is often associated with a reduced plasticity of the protease domain, which improves their proteolytic activity. Nevertheless, some enzymes still require additional stabilization to reduce flexibility of their protease domain. Protein cofactors are designed to optimize the proteolytic activity of such serine proteases, and can improve the catalytic efficiency of these enzymes by one-thousand to one-million fold. The allosteric changes induced by these protein cofactors are specific to each cofactor/enzyme pair. When focusing on the cofactor role of Factor VIIIa (FVIIIa; which stimulates the catalytic activity of factor IXa; FIXa), several aspects are of importance. First, FVIIIa has high affinity for phosphatidylserine-containing phospholipid-membranes, favoring formation of the FVIIIa/FIXa complex at the membrane surface. Being assembled at the membrane surface limits their movements to two dimensions, and enforces the affinity between both proteins. Second, the interactions between FVIIIa and FIXa involve an extended protein surface, which includes interactions between the FVIIIa light chain and FIXa light chain as well as between the FVIIIa A2 domain and the FIXa protease domain. Due to this extended interactive surface, the complex mimics a staked tree, in which FVIIIa orients the FIXa active site at the appropriate distance from the membrane surface. Moreover, binding of the FVIIIa A2 domain to FIXa surface loops reduces flexibility of the protease domain, and it is likely that allosteric changes induced by the A2-domain optimize the conformation of the active site region. Finally, FVIIIa provides also a binding site for the substrate FX. This not only allows FVIIa to function as a molecular bridge between enzyme and substrate, but also helps to align the FX activation peptide with the FIXa active site. This multistep process by which FVIII acts as a cofactor for FIXa may help us to understand how other non-FVIII molecules can be used to stimulate FIXa activity. Several molecular entities have been reported that are enhancing FIXa activity, including short synthetic peptides, monoclonal antibodies and, perhaps best known at this moment, bispecific antibodies that bind both FIXa and FX. Given the complex molecular structure that FVIIIa has and needs to stimulate FIXa activity, it is of interest to reflect on how this translates to the non-FVIII molecules in terms of regulation and potential cofactor activity. Differences in regulation and activity are of particular relevance for laboratory monitoring of these molecules and in the therapeutic setting. Knowing these limitations will help us to optimize the therapeutic application of non-FVIII molecules. Disclosures Lenting: Spark Therapeutics: Honoraria; Catalyst Biosciences: Honoraria; Sobi: Honoraria; Shire/Takeda: Honoraria; NovoNordisk: Honoraria; Biotest: Honoraria; LFB: Honoraria; Roche: Honoraria; laelaps therapeutics: Equity Ownership.


2005 ◽  
Vol 33 (5) ◽  
pp. 1189-1196 ◽  
Author(s):  
W.D. Nes

Several STM (sterol methyltransferase) genes have been cloned, sequenced and expressed in bacteria recently, making it possible to address questions of the relationship between sterol structure and function. The active site and mechanism of action of a set of phylogenetically diverse SMTs have been probed by site-directed mutagenesis as well as by using substrate and related analogues of the SMT-catalysed reaction. An active-site model has been developed that is in accord with the results presented, which is consistent with the hypothesis that SMTs are bifunctional enzymes kinetically responsible to bind Δ24-acceptor sterols of specific steric and electronic character and rigid orientation imposed by multiple hydrophobic active site contacts exacted from a common waxy core. Functional divergence influenced by the architectural role of sterols in membranes is considered to govern the evolution of product distribution and specificity of individual SMTs as discussed.


2002 ◽  
Vol 363 (1) ◽  
pp. 189-193 ◽  
Author(s):  
Nerino ALLOCATI ◽  
Michele MASULLI ◽  
Enrico CASALONE ◽  
Silvia SANTUCCI ◽  
Bartolo FAVALORO ◽  
...  

The functional role of three conserved amino acid residues in Proteus mirabilis glutathione S-transferase B1-1 (PmGST B1-1) has been investigated by site-directed mutagenesis. Crystallographic analyses indicated that Glu65, Ser103 and Glu104 are in hydrogen-bonding distance of the N-terminal amino group of the γ-glutamyl moiety of the co-substrate, GSH. Glu65 was mutated to either aspartic acid or leucine, and Ser103 and Glu104 were both mutated to alanine. Glu65 mutants (Glu65→Asp and Glu65→Leu) lost all enzyme activity, and a drastic decrease in catalytic efficiency was observed for Ser103→Ala and Glu104→Ala mutants toward both 1-chloro-2,4-dinitrobenzene and GSH. On the other hand, all mutants displayed similar intrinsic fluorescence, CD spectra and thermal stability, indicating that the mutations did not affect the structural integrity of the enzyme. Taken together, these results indicate that Ser103 and Glu104 are significantly involved in the interaction with GSH at the active site of PmGST B1-1, whereas Glu65 is crucial for catalysis.


Sign in / Sign up

Export Citation Format

Share Document