scholarly journals Enzymes degraded under high light maintain proteostasis by transcriptional regulation in Arabidopsis

2021 ◽  
Author(s):  
Lei Li ◽  
Owen Duncan ◽  
Diep R Ganguly ◽  
Chun Pong Lee ◽  
Peter A Crisp ◽  
...  

Photo-inhibitory high light stress in Arabidopsis leads to increases in markers of protein degradation and transcriptional upregulation of proteases and proteolytic machinery, but proteostasis is largely maintained. We find significant increases in the in vivo degradation rate for specific molecular chaperones, nitrate reductase, glyceraldehyde-3 phosphate dehydrogenase, and phosphoglycerate kinase and other plastid, mitochondrial, peroxisomal, and cytosolic enzymes involved in redox shuttles. Coupled analysis of protein degradation rates, mRNA levels, and protein abundance reveal that 57% of the nuclear-encoded enzymes with higher degradation rates also had high light-induced transcriptional responses to maintain proteostasis. In contrast, plastid-encoded proteins with enhanced degradation rates showed decreased transcript abundances and must maintain protein abundance by other processes. This analysis reveals a light-induced transcriptional program for nuclear-encoded genes, beyond the regulation of PSII D1 subunit and the function of PSII, to replace key protein degradation targets in plants and ensure proteostasis under high light stress.  

Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 812
Author(s):  
Débora Parrine ◽  
Todd M. Greco ◽  
Bilal Muhammad ◽  
Bo-Sen Wu ◽  
Xin Zhao ◽  
...  

Plants pigments, such as chlorophyll and carotenoids, absorb light within specific wavelength ranges, impacting their response to environmental light changes. Although the color-specific response of plants to natural levels of light is well described, extreme high-light stress is still being discussed as a general response, without considering the impact of wavelengths in particular response processes. In this study, we explored how the plant proteome coordinated the response and recovery to extreme light conditions (21,000 µmol m−2 s−1) under different wavelengths. Changes at the protein and mRNA levels were measured, together with the photosynthetic parameters of plants under extreme high-light conditions. The changes in abundance of four proteins involved in photoinhibition, and in the biosynthesis/assembly of PSII (PsbS, PsbH, PsbR, and Psb28) in both light treatments were measured. The blue-light treatment presented a three-fold higher non-photochemical quenching and did not change the level of the oxygen-evolving complex (OEC) or the photosystem II (PSII) complex components when compared to the control, but significantly increased psbS transcripts. The red-light treatment caused a higher abundance of PSII and OEC proteins but kept the level of psbS transcripts the same as the control. Interestingly, the blue light stimulated a more efficient energy dissipation mechanism when compared to the red light. In addition, extreme high-light stress mechanisms activated by blue light involve the role of OEC through increasing PsbS transcript levels. In the proteomics spatial analysis, we report disparate activation of multiple stress pathways under three differently damaged zones as the enriched function of light stress only found in the medium-damaged zone of the red LED treatment. The results indicate that the impact of extreme high-light stress on the proteomic level is wavelength-dependent.


2010 ◽  
Vol 57 (1) ◽  
Author(s):  
Renata Szymańska ◽  
Jerzy Kruk

In the present study we have identified hydroxy-plastochromanol in plants for the first time. This compound was found both in low light and high light-grown Arabidopsis plants, however, under high light stress its level was considerably increased. Hydroxy-plastochromanol accumulated also during ageing of leaves of low light-grown plants, similarly as in the case of other prenyllipids. Our results indicate that hydroxy-plastochromanol found in leaves is probably formed as a result of plastochromanol oxidation by singlet oxygen generated in photosystem II during photosynthesis. These data also support the hypothesis that plastochromanol is an efficient antioxidant in vivo, similarly as tocopherols and plastoquinol.


2013 ◽  
Vol 162 ◽  
pp. 1-10 ◽  
Author(s):  
Yuefei Xu ◽  
Juanjuan Fu ◽  
Xitong Chu ◽  
Yongfang Sun ◽  
He Zhou ◽  
...  

1991 ◽  
Vol 46 (11-12) ◽  
pp. 1038-1044 ◽  
Author(s):  
Michel Havaux ◽  
Murielle Eyletters

Abstract Preillumination of intact pea leaves with a strong blue-green light of 400 W m-2 markedly inhibited both photoacoustically monitored O2-evolution activity and PS II photochemistry as estimated from chlorophyll fluorescence measurements. The aim of the present work was to examine, with the help of the photoacoustic technique, whether this high-light treatment deteriorated the in vivo PS I function too. High-frequency photoacoustic measurements indicated that photochemical conversion of far-red light energy in PS I was preserved (and even transiently stimulated) whereas photochemical energy storage monitored in light exciting both PS I and PS II was markedly diminished. Low-frequency photoacoustic measurements of the Emerson enhancement showed a spectacular change in the PS II/PS I activity balance in favor of PS I. It was also observed that the linear portion of the saturation curve of the far-red light effect in the Emerson enhancement was not changed by the light treatment. Those results lead to the conclusion that, in contrast to PS II, the in vivo PS I photofunctioning was resistant to strong light stress, thus confirming previous suggestions derived from in vitro studies. Estimation of the redox state of the PS I reaction center by leaf absorbance measurements at ca. 820 nm suggested that, under steady illumination, a considerably larger fraction of PS I centers were in the closed state in high-light pretreated leaves as compared to control leaves, presumably allowing passive adjustment of the macroscopic quantum yield of PS I photochemis­ try to the strongly reduced photochemical efficiency of photoinhibited PS II.


Sign in / Sign up

Export Citation Format

Share Document