scholarly journals Identifying a novel role for the master regulator Tal1 in the Endothelial to Hematopoietic Transition

2021 ◽  
Author(s):  
Yasmin Natalia Serina Secanechia ◽  
Isabelle Bergiers ◽  
Matt Rogon ◽  
Christian Arnold ◽  
Nicolas Descostes ◽  
...  

ABSTRACTRecent progress in the generation of bona-fide Hematopoietic Stem and Progenitor Cells (HSPCs) in vitro and ex vivo has been built on the knowledge of developmental hematopoiesis, underscoring the importance of understanding in detail this developmental process. Here, we sought to elucidate the function of the hematopoietic regulators Tal1, Lmo2 and Lyl1 in the Endothelial to Hematopoietic Transition (EHT), the process through which HSPCs are generated from endothelial precursors during embryogenesis. We used a mouse embryonic-stem cell (mESC)-based differentiation system to model hematopoietic development, and combined gain-of-function experiments in sorted vascular smooth muscle cells (VSM) with multi-omics to obtain mechanistic insights into the mode of action of Tal1, Lmo2 and Lyl1. We found that these factors promote the silencing of the VSM transcriptional program and the activation of the hematopoietic one. Through this approach and the use of a Tet-on system to control the expression of Tal1 during hematopoietic specification from mESCs, we discovered that its expression in endothelial cells is crucial for the EHT to occur.

2020 ◽  
Author(s):  
Melany Jackson ◽  
Antonella Fidanza ◽  
A. Helen Taylor ◽  
Stanislav Rybtsov ◽  
Richard Axton ◽  
...  

ABSTRACTApelin receptor (Aplnr/Agtrl1/Apj) marks a transient cell population during the differentiation of hematopoietic progenitor cells (HPCs) from pluripotent stem cells but the function of this signalling pathway during hematopoietic development both in vitro and in vitro is poorly understood. We generated an Aplnr-null mouse embryonic stem cell (mESC) line and demonstrated that they are significantly impaired in the production of HPCs indicating that the Aplnr pathway is required for their formation. Using Aplnr-tdTomato reporter mESCs we demonstrated that is expressed in a population of differentiating mesodermal cells committed to a hematopoietic and endothelial fate. Activation of this signaling pathway by the addition of the Apelin ligand to differentiating ESCs has no effect on the production of HPCs but the addition to ex vivo AGM cultures impaired the generation of long term reconstituting hematopoietic stem cells and appeared to drive myeloid differentiation. Taken together, our data suggest that the Aplnr pathway is required for the generation of cells that give rise to HSCs during development but its subsequent down regulation is required for their maintenance.HIGHLIGHTSHematopoietic differentiation is impaired in Aplnr-null ESCsAplnr-tdTomato reporter marks a subpopulation of ESC-derived mesoderm.Aplnr signaling drives the maturation of lineage-committed myeloid progenitorsIn AGM explant cultures HSC activity is reduced in the presence of Aplnr ligands.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1557-1566 ◽  
Author(s):  
Stephen J. Szilvassy ◽  
Michael J. Bass ◽  
Gary Van Zant ◽  
Barry Grimes

Abstract Hematopoietic reconstitution of ablated recipients requires that intravenously (IV) transplanted stem and progenitor cells “home” to organs that support their proliferation and differentiation. To examine the possible relationship between homing properties and subsequent engraftment potential, murine bone marrow (BM) cells were labeled with fluorescent PKH26 dye and injected into lethally irradiated hosts. PKH26+ cells homing to marrow or spleen were then isolated by fluorescence-activated cell sorting and assayed for in vitro colony-forming cells (CFCs). Progenitors accumulated rapidly in the spleen, but declined to only 6% of input numbers after 24 hours. Although egress from this organ was accompanied by a simultaneous accumulation of CFCs in the BM (plateauing at 6% to 8% of input after 3 hours), spleen cells remained enriched in donor CFCs compared with marrow during this time. To determine whether this differential homing of clonogenic cells to the marrow and spleen influenced their contribution to short-term or long-term hematopoiesis in vivo, PKH26+ cells were sorted from each organ 3 hours after transplantation and injected into lethally irradiated Ly-5 congenic mice. Cells that had homed initially to the spleen regenerated circulating leukocytes (20% of normal counts) approximately 2 weeks faster than cells that had homed to the marrow, or PKH26-labeled cells that had not been selected by a prior homing step. Both primary (17 weeks) and secondary (10 weeks) recipients of “spleen-homed” cells also contained approximately 50% higher numbers of CFCs per femur than recipients of “BM-homed” cells. To examine whether progenitor homing was altered upon ex vivo expansion, highly enriched Sca-1+c-kit+Lin−cells were cultured for 9 days in serum-free medium containing interleukin (IL)-6, IL-11, granulocyte colony-stimulating factor, stem cell factor, flk-2/flt3 ligand, and thrombopoietin. Expanded cells were then stained with PKH26 and assayed as above. Strikingly, CFCs generated in vitro exhibited a 10-fold reduction in homing capacity compared with fresh progenitors. These studies demonstrate that clonogenic cells with differential homing properties contribute variably to early and late hematopoiesis in vivo. The dramatic decline in the homing capacity of progenitors generated in vitro underscores critical qualitative changes that may compromise their biologic function and potential clinical utility, despite their efficient numerical expansion.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3568-3568
Author(s):  
Mattias Magnusson ◽  
Melissa Romero ◽  
Sacha Prashad ◽  
Ben Van Handel ◽  
Suvi Aivio ◽  
...  

Abstract Expansion of human hematopoietic stem cells (HSCs) ex vivo has been difficult due to limited understanding of their growth requirements and the molecular complexity of their natural microenvironments. To mimic the niches in which human HSCs normally develop and expand during ontogeny, we have derived two unique types of stromal niche cells from the first trimester human placenta and the fetal liver. These lines either support maintenance of multipotential progenitors in culture, or promote differentiation into macrophages. Impressively, the supportive lines facilitate over 50,000-fold expansion of the most immature human HSCs/progenitors (CD34+CD38-Thy1+) during 8-week culture supplemented with minimal cytokines FLT3L, SCF and TPO, whereas the cells cultured on non-supportive stroma or without stroma under the same conditions differentiated within 2 weeks. As the supportive stroma lines also facilitate differentiation of human hematopoietic progenitors into myeloid, erythroid and B-lymphoid lineages, we were able to show that the expanded progenitors preserved full multipotentiality during long-term culture ex vivo. Furthermore, our findings indicate that the supportive stroma lines also direct differentiation of human embryonic stem cells (hESC) into hematopoietic progenitor cells (CD45+CD34+) that generate multiple types of myeloerythroid colonies. These data imply that the unique supportive niche cells can both support hematopoietic specification and sustain a multilineage hematopoietic hierarchy in culture over several weeks. Strikingly, the supportive effect from the unique stromal cells was dominant over the differentiation effect from the non-supportive lines. Even supernatant from the supportive lines was able to partially protect the progenitors that were cultured on the non-supportive lines, whereas mixing of the two types of stroma resulted in sustained preservation of the multipotential progenitors. These results indicate that the supportive stroma cells possess both secreted and surface bound molecules that protect multipotentiality of HSCs. Global gene expression analysis revealed that the supportive stroma lines from both the placenta and the fetal liver were almost identical (r=0.99) and very different from the non-supportive lines that promote differentiation (r=0.34), implying that they represent two distinct niche cell types. Interestingly, the non-supportive lines express known mesenchymal markers such as (CD73, CD44 and CD166), whereas the identity of the supportive cells is less obvious. In summary, we have identified unique human stromal niche cells that may be critical components of the HSC niches in the placenta and the fetal liver. Molecular characterization of these stroma lines may enable us to define key mechanisms that govern the multipotentiality of HSCs.


2019 ◽  
Vol 20 (8) ◽  
pp. 1985 ◽  
Author(s):  
Huilin Li ◽  
Haiyun Pei ◽  
Xiaoyan Xie ◽  
Sihan Wang ◽  
Yali Jia ◽  
...  

Cord blood (CB) is an attractive source of hematopoietic stem cells (HSCs) for hematopoietic cell transplantation. However, its application remains limited due to the low number of HSCs/progenitors in a single CB unit and its notoriously difficulty in expanding ex vivo. Here, we demonstrated that the human fetal liver sinusoidal endothelial cells engineered to constitutively express the adenoviral E4orf1 gene (hFLSECs-E4orf1) is capable of efficient expansion ex vivo for human CB hematopoietic stem and progenitor cells (HSPCs). Coculture of CD34+ hCB cells with hFLSECs-E4orf1 resulted in generation of substantially more total nucleated cells, CD34+CD38− and CD34+ CD38−CD90+ HSPCs in comparison with that of cytokines alone after 14 days. The multilineage differentiation potential of the expanded hematopoietic cells in coculture condition, as assessed by in vitro colony formation, was also significantly heightened. The CD34+ hCB cells amplified on hFLSECs-E4orf1 were capable of engraftment in vivo. Furthermore, hFLSECs-E4orf1 highly expressed hematopoiesis related growth factor and Notch receptors. Accordingly, the CD34+ hCB cells amplified on hFLSECs-E4orf1 exhibited Notch signaling activation. Taken together, our findings indicated that FLSECs may potentially be the crucial component of the microenvironment to support recapitulation of embryonic HSC amplification in vitro and allow identification of new growth factors responsible for collective regulation of hematopoiesis.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Hui Xie ◽  
Li Sun ◽  
Liming Zhang ◽  
Teng Liu ◽  
Li Chen ◽  
...  

Mesenchymal stem cells (MSCs) are known to support the characteristic properties of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow hematopoietic microenvironment. MSCs are used in coculture systems as a feeder layer for the ex vivo expansion of umbilical cord blood (CB) to increase the relatively low number of HSPCs in CB. Findings increasingly suggest that MSC-derived microvesicles (MSC-MVs) play an important role in the biological functions of their parent cells. We speculate that MSC-MVs may recapitulate the hematopoiesis-supporting effects of their parent cells. In the current study, we found MSC-MVs containing microRNAs that are involved in the regulation of hematopoiesis. We also demonstrated that MSC-MVs could improve the expansion of CB-derived mononuclear cells and CD34+cells and generate a greater number of primitive progenitor cells in vitro. Additionally, when MSC-MVs were added to the CB-MSC coculture system, they could improve the hematopoiesis-supporting effects of MSCs. These findings highlight the role of MSC-MVs in the ex vivo expansion of CB, which may offer a promising therapeutic approach in CB transplantation.


Author(s):  
Lucas Lange ◽  
Michael Morgan ◽  
Axel Schambach

AbstractIn vitro generation of hematopoietic cells and especially hematopoietic stem cells (HSCs) from human pluripotent stem cells (PSCs) are subject to intensive research in recent decades, as these cells hold great potential for regenerative medicine and autologous cell replacement therapies. Despite many attempts, in vitro, de novo generation of bona fide HSCs remains challenging, and we are still far away from their clinical use, due to insufficient functionality and quantity of the produced HSCs. The challenges of generating PSC-derived HSCs are already apparent in early stages of hemato-endothelial specification with the limitation of recapitulating complex, dynamic processes of embryonic hematopoietic ontogeny in vitro. Further, these current shortcomings imply the incompleteness of our understanding of human ontogenetic processes from embryonic mesoderm over an intermediate, specialized hemogenic endothelium (HE) to their immediate progeny, the HSCs. In this review, we examine the recent investigations of hemato-endothelial ontogeny and recently reported progress for the conversion of PSCs and other promising somatic cell types towards HSCs with the focus on the crucial and inevitable role of the HE to achieve the long-standing goal—to generate therapeutically applicable PSC-derived HSCs in vitro.


Development ◽  
2021 ◽  
Author(s):  
Nathalia Azevedo Portilho ◽  
Rebecca Scarfò ◽  
Elisa Bertesago ◽  
Ismail Ismailoglu ◽  
Michael Kyba ◽  
...  

B-1 lymphocytes are a small but unique component of the innate immune-like cells. However, their ontogenic origin is still a matter of debate. While it is widely accepted that B-1 cells originate early in fetal life, whether or not they arise from hematopoietic stem cells (HSCs) is still unclear. In order to shed light on the B-1 cell origin, we set out to determine whether their lineage specification is dependent on Notch signaling, which is essential for the HSC generation and therefore, all derivatives lineages. Using mouse embryonic stem cells (mESCs) to recapitulate murine embryonic development, we have studied the requirement for Notch signaling during the earliest B-lymphopoiesis and found that Rbpj-deficient mESCs are able to generate B-1 cells. Their Notch-independence was confirmed in ex vivo experiments using Rbpj-deficient embryos. In addition, we found that upregulation of Notch signaling induced the emergence of B-2 lymphoid cells. Taken together, these findings indicate that control of Notch signaling dosage is critical for different B-cell lineages specification from endothelial cells and provides pivotal information for their in vitro generation from PSCs for therapeutic applications.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1557-1566 ◽  
Author(s):  
Stephen J. Szilvassy ◽  
Michael J. Bass ◽  
Gary Van Zant ◽  
Barry Grimes

Hematopoietic reconstitution of ablated recipients requires that intravenously (IV) transplanted stem and progenitor cells “home” to organs that support their proliferation and differentiation. To examine the possible relationship between homing properties and subsequent engraftment potential, murine bone marrow (BM) cells were labeled with fluorescent PKH26 dye and injected into lethally irradiated hosts. PKH26+ cells homing to marrow or spleen were then isolated by fluorescence-activated cell sorting and assayed for in vitro colony-forming cells (CFCs). Progenitors accumulated rapidly in the spleen, but declined to only 6% of input numbers after 24 hours. Although egress from this organ was accompanied by a simultaneous accumulation of CFCs in the BM (plateauing at 6% to 8% of input after 3 hours), spleen cells remained enriched in donor CFCs compared with marrow during this time. To determine whether this differential homing of clonogenic cells to the marrow and spleen influenced their contribution to short-term or long-term hematopoiesis in vivo, PKH26+ cells were sorted from each organ 3 hours after transplantation and injected into lethally irradiated Ly-5 congenic mice. Cells that had homed initially to the spleen regenerated circulating leukocytes (20% of normal counts) approximately 2 weeks faster than cells that had homed to the marrow, or PKH26-labeled cells that had not been selected by a prior homing step. Both primary (17 weeks) and secondary (10 weeks) recipients of “spleen-homed” cells also contained approximately 50% higher numbers of CFCs per femur than recipients of “BM-homed” cells. To examine whether progenitor homing was altered upon ex vivo expansion, highly enriched Sca-1+c-kit+Lin−cells were cultured for 9 days in serum-free medium containing interleukin (IL)-6, IL-11, granulocyte colony-stimulating factor, stem cell factor, flk-2/flt3 ligand, and thrombopoietin. Expanded cells were then stained with PKH26 and assayed as above. Strikingly, CFCs generated in vitro exhibited a 10-fold reduction in homing capacity compared with fresh progenitors. These studies demonstrate that clonogenic cells with differential homing properties contribute variably to early and late hematopoiesis in vivo. The dramatic decline in the homing capacity of progenitors generated in vitro underscores critical qualitative changes that may compromise their biologic function and potential clinical utility, despite their efficient numerical expansion.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1628 ◽  
Author(s):  
Antonio Carlos Ribeiro-Filho ◽  
Débora Levy ◽  
Jorge Luis Maria Ruiz ◽  
Marluce da Cunha Mantovani ◽  
Sérgio Paulo Bydlowski

Hematopoiesis is the main function of bone marrow. Human hematopoietic stem and progenitor cells reside in the bone marrow microenvironment, making it a hotspot for the development of hematopoietic diseases. Numerous alterations that correspond to disease progression have been identified in the bone marrow stem cell niche. Complex interactions between the bone marrow microenvironment and hematopoietic stem cells determine the balance between the proliferation, differentiation and homeostasis of the stem cell compartment. Changes in this tightly regulated network can provoke malignant transformation. However, our understanding of human hematopoiesis and the associated niche biology remains limited due to accessibility to human material and the limits of in vitro culture models. Traditional culture systems for human hematopoietic studies lack microenvironment niches, spatial marrow gradients, and dense cellularity, rendering them incapable of effectively translating marrow physiology ex vivo. This review will discuss the importance of 2D and 3D culture as a physiologically relevant system for understanding normal and abnormal hematopoiesis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Stefan Radtke ◽  
André Görgens ◽  
Symone Vitoriano da Conceição Castro ◽  
Lambros Kordelas ◽  
Angela Köninger ◽  
...  

Abstract Endothelial and mesenchymal stromal cells (ECs/MSCs) are crucial components of hematopoietic bone marrow stem cell niches. Both cell types appear to be required to support the maintenance and expansion of multipotent hematopoietic cells, i.e. hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs). With the aim to exploit niche cell properties for experimental and potential clinical applications, we analyzed the potential of primary ECs alone and in combination with MSCs to support the ex vivo expansion/maintenance of human hematopoietic stem and progenitor cells (HSPCs). Even though a massive expansion of total CD34+ HSPCs was observed, none of the tested culture conditions supported the expansion or maintenance of multipotent HSPCs. Instead, mainly lympho-myeloid primed progenitors (LMPPs) were expanded. Similarly, following transplantation into immunocompromised mice the percentage of multipotent HSPCs within the engrafted HSPC population was significantly decreased compared to the original graft. Consistent with the in vitro findings, a bias towards lympho-myeloid lineage potentials was observed. In our conditions, neither classical co-cultures of HSPCs with primary ECs or MSCs, even in combination, nor the xenograft environment in immunocompromised mice efficiently support the expansion of multipotent HSPCs. Instead, enhanced expansion and a consistent bias towards lympho-myeloid committed LMPPs were observed.


Sign in / Sign up

Export Citation Format

Share Document