scholarly journals Influence of sex, season and environmental air quality on experimental human pneumococcal carriage acquisition

Author(s):  
Katerina S. Cheliotis ◽  
Christopher P. Jewell ◽  
Carla Solórzano ◽  
Britta Urban ◽  
Andrea M. Collins ◽  
...  

AbstractStreptococcus pneumoniae (pneumococcus) is the most common identified bacterial cause of pneumonia, and the leading infectious cause of death in children under five years of age worldwide. Pneumococcal disease follows a seasonal pattern with increased incidence during winter. Pneumonia burden is also associated with poor air quality. Nasopharyngeal carriage of the bacterium is a pre-requisite of invasive disease.We aimed to determine if susceptibility to nasopharyngeal pneumococcal carriage varied by season, and which environmental factors might explain such variation. We also evaluated the influence of sex on susceptibility of carriage. We collated data from five studies in which human volunteers underwent intranasal pneumococcal challenge. Generalised linear mixed effects models were used to identify factors associated with altered risk of carriage acquisition, specifically climate and air-quality data.During 2011-2017, 374 healthy adults were challenged with type 6B pneumococcus. Odds of carriage were significantly lower in males (OR, 0.61; 95% CI, 0.40-0.92; p = 0.02), and higher with cooler temperatures (OR, 0.79; 95% CI, 0.63-0.99; p = 0.04). Likelihood of carriage also associated with lower concentrations of local fine particulate matter concentrations (PM2.5) and increased local rainfall.In contrast to epidemiologic series, experimental challenge allowed us to test propensity to acquisition during controlled exposures; immunologic explanations for sex and climatic differences should be sought.

2011 ◽  
Vol 8 (2) ◽  
pp. 115 ◽  
Author(s):  
Melita Keywood ◽  
Helen Guyes ◽  
Paul Selleck ◽  
Rob Gillett

Environmental contextParticulate matter is detrimental to human health necessitating air quality standards to ensure that populations are not exposed to harmful levels of air pollutants. We quantified, for the first time in an Australian city, secondary organic aerosol produced in the atmosphere by chemical reactions, and show that it constitutes a significant fraction of the fine particulate matter. Secondary organic aerosol should be considered in regulations to control particulate matter and ozone. AbstractThe contribution of secondary organic aerosol (SOA) to particulate mass (PM) in an Australian urban airshed is quantified for the first time in this work. SOA is estimated indirectly using the elemental carbon tracer method. The contribution of primary organic carbon (OC) to PM is determined using ambient air quality data, which is used to indicate photochemical activity and as a tracer for a general vehicular combustion source. In addition, levoglucosan concentrations were used to determine the contribution of wood heater emissions to primary OC. The contribution of bushfire smoke to primary OC emissions was determined from the organic and elemental carbon (OC/EC) ratios measured in bushfire source samples. The median annual SOA concentration determined in this work was 1.1 µg m–3, representing ~13% of PM2.5 median concentrations on an annual basis (assuming a ratio of organic mass (OM) to OC of 1.6). Significantly higher SOA concentrations were determined when bushfire smoke affected the airshed; however, the SOA fraction of PM2.5 was greatest during the autumn and early winter months when the formation of inversions allows build up of particles produced by domestic wood-heater emissions.


Toxics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 357
Author(s):  
Yulong Wang ◽  
Youwen Sun ◽  
Gerong Zhao ◽  
Yuan Cheng

Because of the unique geographical, climate, and anthropogenic emission characteristics, it is meaningful to explore the air pollution in the Harbin-Changchun (HC) metropolitan area. In this study, the Air Quality Index (AQI) and the corresponding major pollutant were investigated for the HC cities, based on the air quality data derived from the China National Environmental Monitoring Center. The number of days with the air quality level of “good” gradually increased during recent years, pointing to an improvement of the air quality in HC. It was also found that ozone, a typical secondary pollutant, exhibited stronger inter-city correlations compared to typical primary pollutants such as carbon monoxide and nitrogen dioxide. In addition, for nearly all the HC cities, the concentrations of fine particulate matter (PM2.5) decreased substantially in 2020 compared to 2015. However, this was not the case for ozone, with the most significant increase of ozone observed for HC’s central city, Harbin. This study highlights the importance of ozone reduction for further improving HC’s air quality, and the importance of agricultural fire control for eliminating heavily-polluted and even off-the-charts PM2.5 episodes.


2020 ◽  
Author(s):  
Ramachandran Subramanian ◽  
Matthias Beekmann ◽  
Carl Malings ◽  
Anais Feron ◽  
Paola Formenti ◽  
...  

<p>Ambient air pollution is a leading cause of premature mortality across the world, with an estimated 258,000 deaths in Africa (UNICEF/GBD 2017). These estimated impacts have large uncertainties as many major cities in Africa do not have any ground-based air quality monitoring. The lack of data is due in part to the high cost of traditional monitoring equipment and the lack of trained personnel. As part of the “Make Air Quality Great Again” project under the “Make Our Planet Great Again” framework (MOPGA), we propose filling this data gap with low-cost sensors carefully calibrated against reference monitors.</p><p>Fifteen real-time affordable multi-pollutant (RAMP) monitors have been deployed in Abidjan, Côte d'Ivoire; Accra, Ghana; Kigali, Rwanda; Nairobi, Kenya; Niamey, Niger; and Zamdela, South Africa (near Johannesburg). The RAMPs use Plantower optical nephelometers to measure fine particulate matter mass (PM<sub>2.5</sub>) and four Alphasense electrochemical sensors to detect pollutant gases including nitrogen dioxide (NO<sub>2</sub>) and ozone (O<sub>3</sub>).</p><p>Using a calibration developed in Créteil, France, the deployments thus far reveal morning and evening spikes in combustion-related air pollution. The median hourly NO<sub>2</sub> in Accra and Nairobi for September-October 2019 was about 11 ppb; a similar value was observed across November-December 2019 in Zamdela. However, a previous long-term deployment of the RAMPs in Rwanda showed that, for robust data quality, low-cost sensors must be collocated with traditional reference monitors to develop localized calibration models. Hence, we acquired regulatory-grade PM<sub>2.5</sub>, NO<sub>2</sub>, and O<sub>3</sub> monitors for Abidjan and Accra. We also collocated RAMPs with existing reference monitors in Zamdela, Kigali, Abidjan, and Lamto (a rural site in Côte d'Ivoire). In this talk, we will present results on spatio-temporal variability of collocation-based sensor calibrations across these different cities, source identification, and challenges and plans for future expansion.</p>


2019 ◽  
pp. tobaccocontrol-2018-054895 ◽  
Author(s):  
Sean Semple ◽  
Ruaraidh Dobson ◽  
Helen Sweeting ◽  
Ashley Brown ◽  
Kate Hunt

ObjectiveTo determine secondhand smoke (SHS) concentrations in prisons during the week of implementation of a new, national prisons smoke-free policy.DesignRepeated measurement of SHS concentrations immediately before and after implementation of smoke-free policies across all 15 prisons in Scotland, and comparison with previously gathered baseline data from 2016.MethodsFine particulate matter (PM2.5) measurements at a fixed location over a continuous 6-day period were undertaken at the same site in each prison as previously carried out in 2016. Outdoor air quality data from the nearest local authority measurement station were acquired to determine the contribution of outdoor air pollution to indoor prison measurement of PM2.5.ResultsAir quality improved in all prisons comparing 2016 data with the first full working day postimplementation (overall median reduction −81%, IQR −76% to −91%). Postimplementation indoor PM2.5 concentrations were broadly comparable with outdoor concentrations suggesting minimal smoking activity during the period of measurement.ConclusionsThis is the first evaluation of changes in SHS concentrations across all prisons within a country that has introduced nationwide prohibition of smoking in prisons. All prisons demonstrated immediate substantial reductions in PM2.5 following policy implementation. A smoke-free prisons policy reduces the exposure of prison staff and prisoners to SHS.


Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 76
Author(s):  
Estrella Lucena-Sánchez ◽  
Guido Sciavicco ◽  
Ionel Eduard Stan

Air quality modelling that relates meteorological, car traffic, and pollution data is a fundamental problem, approached in several different ways in the recent literature. In particular, a set of such data sampled at a specific location and during a specific period of time can be seen as a multivariate time series, and modelling the values of the pollutant concentrations can be seen as a multivariate temporal regression problem. In this paper, we propose a new method for symbolic multivariate temporal regression, and we apply it to several data sets that contain real air quality data from the city of Wrocław (Poland). Our experiments show that our approach is superior to classical, especially symbolic, ones, both in statistical performances and the interpretability of the results.


Author(s):  
James R. Hodgson ◽  
Lee Chapman ◽  
Francis D. Pope

AbstractUrban air pollution can have negative short- and long-term impacts on health, including cardiovascular, neurological, immune system and developmental damage. The irritant qualities of pollutants such as ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM) can cause respiratory and cardiovascular distress, which can be heightened during physical activity and particularly so for those with respiratory conditions such as asthma. Previously, research has only examined marathon run outcomes or running under laboratory settings. This study focuses on elite 5-km athletes performing in international events at nine locations. Local meteorological and air quality data are used in conjunction with race performance metrics from the Diamond League Athletics series to determine the extent to which elite competitors are influenced during maximal sustained efforts in real-world conditions. The findings from this study suggest that local meteorological variables (temperature, wind speed and relative humidity) and air quality (ozone and particulate matter) have an impact on athletic performance. Variation between finishing times at different race locations can also be explained by the local meteorology and air quality conditions seen during races.


Sign in / Sign up

Export Citation Format

Share Document