scholarly journals A persistent behavioral state enables sustained predation of humans by mosquitoes

2021 ◽  
Author(s):  
Trevor R Sorrells ◽  
Anjali Pandey ◽  
Adriana Rosas-Villegas ◽  
Leslie B Vosshall

Predatory animals first detect, then pursue, and ultimately capture prey. Sensory cues, including scent emitted by prey, are detected by the predator and used to guide pursuit. Because the pursuit phase can last for extended periods of time, it is critical for predators to persist in the chase even when prey is difficult to detect in a noisy sensory land-scape. It is equally important for predators to abandon pursuit if enough time has elapsed that prey capture is unlikely to occur. We studied prey detection and sustained pursuit in the mosquito Aedes aegypti, a micropredator of humans. These animals first detect hu-mans through sensory cues that are emitted at a distance such as carbon dioxide in breath and odor from skin. As the mosquito approaches a human, additional cues such as body heat and visual contrast signal the promise of a blood meal, which females need to produce eggs. To study how initial prey detection influences the duration of pursuit, we developed optogenetic tools to induce a brief fictive sensation of carbon dioxide and used machine learning-based classification of behavior to investigate how mosquitoes respond to subsequent human cues. We found that a 5-second optogenetic pulse of fictive carbon dioxide induced a persistent behavioral state in female mosquitoes that lasted for more than 10 minutes. This state is highly specific to females searching for a blood meal and was not induced in recently blood-fed females or in males, who do not feed on blood. In males that lack the gene fruitless, which controls persistent social behaviors in other insects, fictive carbon dioxide induced a long-lasting behavior response resembling the predatory state of females. Finally, we show that the persistent state triggered by detection of fictive carbon dioxide enabled females to engorge on a blood meal mimic offered up to 14 minutes after the initial stimulus. Our results demonstrate that a persistent internal state allows female mosquitoes to integrate multiple human sensory cues over long timescales, an ability that is key to their success as an apex micropredator of humans

2001 ◽  
Vol 204 (8) ◽  
pp. 1381-1389 ◽  
Author(s):  
L.A. Wilkens ◽  
B. Wettring ◽  
E. Wagner ◽  
W. Wojtenek ◽  
D. Russell

The long rostrum of the paddlefish Polyodon spathula supports an extensive array of ampullary electroreceptors and has been proposed to function as an antenna for detecting planktonic prey. Evidence in support of this hypothesis is presented in experiments that preclude the use of other sensory mechanisms for plankton detection. Paddlefish swimming in a recirculating observation chamber are shown to feed normally in the dark when prey-related chemical and hydrodynamic sensory cues are masked or attenuated. Specifically, we demonstrate that the spatial distribution of plankton captured by paddlefish is little changed when the plankton are individually encapsulated in agarose, when a high background concentration of plankton extract is added to the chamber, when the nares are plugged and under turbulent water flow conditions. Paddlefish also discriminate between encapsulated plankton and ‘empty’ agarose particles of the same size. Although capture distributions differed somewhat under certain conditions, the general pattern and effectiveness of prey capture were not disrupted by these procedures. These results support the conclusion that paddlefish, as zooplanktivores, rely on their passive electric sense for prey detection.


1968 ◽  
Vol 15 (1) ◽  
pp. 144-148 ◽  
Author(s):  
PETER A. NYBERG ◽  
DIANA H. BAUER ◽  
STUART E. KNAPP

2008 ◽  
Vol 65 (2) ◽  
pp. 266-275 ◽  
Author(s):  
John J Piccolo ◽  
Nicholas F Hughes ◽  
Mason D Bryant

We examined the effects of water velocity on prey detection and capture by drift-feeding juvenile coho salmon (Oncorhynchus kisutch) and steelhead (sea-run rainbow trout, Oncorhynchus mykiss irideus) in laboratory experiments. We used repeated-measures analysis of variance to test the effects of velocity, species, and the velocity × species interaction on prey capture probability, prey detection distance, and swimming speeds during prey capture. We used 3D video analysis to assess the spatial and temporal characteristics of prey detection and capture. Coho and steelhead showed significant, velocity-dependent decreases in capture probability (~65% to 10%, with an increase of velocity from 0.29 to 0.61 m·s-1) and prey detection distance, with no effect of species and no velocity × species interaction. Neither velocity nor species affected prey interception speed; fish intercepted prey at their predicted maximum sustainable swimming speed (Vmax) at all velocities. Speed of return to the focal point increased significantly with increasing velocity, with no effect of species. At faster velocities, return speeds were faster than Vmax, indicating potential increases in energetic cost because of anaerobic swimming. The 3D analysis suggests that the reduction in capture probability was due to both reduced prey detection distance and a uniform decline in detection probability within the prey capture area.


2017 ◽  
Vol 68 (9) ◽  
pp. 1585 ◽  
Author(s):  
Stephen R. Midway ◽  
Caleb T. Hasler ◽  
Tyler Wagner ◽  
Cory D. Suski

Carbon dioxide (CO2) in fresh-water environments is poorly understood, yet in marine environments CO2 can affect fish behaviour, including predator–prey relationships. To examine changes in predator success in elevated CO2, we experimented with predatory Micropterus salmoides and Pimephales promelas prey. We used a two-factor fully crossed experimental design; one factor was 4-day (acclimation) CO2 concentration and the second factor CO2 concentration during 20-min predation experiments. Both factors had three treatment levels, including ambient partial pressure of CO2 (pCO2; 0–1000 μatm), low pCO2 (4000–5000 μatm) and high pCO2 (8000–10000 μatm). Micropterus salmoides was exposed to both factors, whereas P. promelas was not exposed to the acclimation factor. In total, 83 of the 96P. promelas were consumed (n=96 trials) and we saw no discernible effect of CO2 on predator success or time to predation. Failed strikes and time between failed strikes were too infrequent to model. Compared with marine systems, our findings are unique in that we not only saw no changes in prey capture success with increasing CO2, but we also used CO2 treatments that were substantially higher than those in past experiments. Our work demonstrated a pronounced resiliency of freshwater predators to elevated CO2 exposure, and a starting point for future work in this area.


2022 ◽  
Vol 15 ◽  
Author(s):  
Anita V. Devineni ◽  
Kristin M. Scaplen

Behavioral flexibility is critical to survival. Animals must adapt their behavioral responses based on changes in the environmental context, internal state, or experience. Studies in Drosophila melanogaster have provided insight into the neural circuit mechanisms underlying behavioral flexibility. Here we discuss how Drosophila behavior is modulated by internal and behavioral state, environmental context, and learning. We describe general principles of neural circuit organization and modulation that underlie behavioral flexibility, principles that are likely to extend to other species.


2002 ◽  
Vol 205 (7) ◽  
pp. 877-896 ◽  
Author(s):  
C. J. H. Elliott ◽  
A. J. Susswein

SUMMARY Over the last 30 years, many laboratories have examined, in parallel, the feeding behaviour of gastropod molluscs and the properties of the nervous system that give rise to this behaviour. Equal attention to both behavioural and neurobiological issues has provided deep insight into the functioning of the nervous system in generating and controlling behaviour. The conclusions derived from studies on gastropod feeding are generally consistent with those from other systems, but often provide more detailed information on the behavioural function of a particular property of the nervous system. A review of the literature on gastropod feeding illustrates a number of important messages. (i) Many of the herbivorous gastropods display similarities in behaviour that are reflected in corresponding similarities in neural anatomy,pharmacology and physiology. By contrast, the same aspects of the behaviour of different carnivorous species are quite variable, possibly because of their specialised prey-capture techniques. Nonetheless, some aspects of the neural control of feeding are preserved. (ii) Feeding in all species is flexible,with the behaviour and the physiology adapting to changes in the current environment and internal state and as a result of past experience. Flexibility arises via processes that may take place at many neural sites, and much of the modulation underlying behavioural flexibility is understood at a systems and at a cellular level. (iii) Neurones seem to have specific functions that are consistent with their endogenous properties and their synaptic connections, suggesting that individual neurones code specific pieces of information (i.e. they are `grandmother cells'). However, the properties of a neurone can be extremely complex and can be understood only in the context of the complete neural circuit and the behaviour that it controls. In systems that are orders of magnitude more complex, it would be impossible to understand the functional properties of an individual neurone, even if it also coded specific information. (iv) Systems such as gastropod feeding may provide a model for understanding the functional properties of more complex systems.


Cell ◽  
2014 ◽  
Vol 156 (5) ◽  
pp. 1060-1071 ◽  
Author(s):  
Conor J. McMeniman ◽  
Román A. Corfas ◽  
Benjamin J. Matthews ◽  
Scott A. Ritchie ◽  
Leslie B. Vosshall

PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e47906 ◽  
Author(s):  
Eleonora Bruno ◽  
Christian Marc Andersen Borg ◽  
Thomas Kiørboe
Keyword(s):  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Brad K Hulse ◽  
Hannah Haberkern ◽  
Romain Franconville ◽  
Daniel B Turner-Evans ◽  
Shinya Takemura ◽  
...  

Flexible behaviors over long timescales are thought to engage recurrent neural networks in deep brain regions, which are experimentally challenging to study. In insects, recurrent circuit dynamics in a brain region called the central complex (CX) enable directed locomotion, sleep, and context- and experience-dependent spatial navigation. We describe the first complete electron-microscopy-based connectome of the Drosophila CX, including all its neurons and circuits at synaptic resolution. We identified new CX neuron types, novel sensory and motor pathways, and network motifs that likely enable the CX to extract the fly’s head-direction, maintain it with attractor dynamics, and combine it with other sensorimotor information to perform vector-based navigational computations. We also identified numerous pathways that may facilitate the selection of CX-driven behavioral patterns by context and internal state. The CX connectome provides a comprehensive blueprint necessary for a detailed understanding of network dynamics underlying sleep, flexible navigation, and state-dependent action selection.


2019 ◽  
Author(s):  
Benjamin T. Cocanougher ◽  
Jason D. Wittenbach ◽  
Xi Salina Long ◽  
Andrea B. Kohn ◽  
Tigran P. Norekian ◽  
...  

SummaryMolecular profiles of neurons influence information processing, but bridging the gap between genes, circuits, and behavior has been very difficult. Furthermore, the behavioral state of an animal continuously changes across development and as a result of sensory experience. How behavioral state influences molecular cell state is poorly understood. Here we present a complete atlas of the Drosophila larval central nervous system composed of over 200,000 single cells across four developmental stages. We develop polyseq, a python package, to perform cell-type analyses. We use single-molecule RNA-FISH to validate our scRNAseq findings. To investigate how internal state affects cell state, we optogentically altered internal state with high-throughput behavior protocols designed to mimic wasp sting and over activation of the memory system. We found nervous system-wide and neuron-specific gene expression changes. This resource is valuable for developmental biology and neuroscience, and it advances our understanding of how genes, neurons, and circuits generate behavior.


Sign in / Sign up

Export Citation Format

Share Document