scholarly journals Benchmarking imputation methods for network inference using a novel method of synthetic scRNA-seq data generation

2021 ◽  
Author(s):  
Ayoub Lasri ◽  
Vahid Shahrezaei ◽  
Marc Sturrock

Single cell RNA-sequencing (scRNA-seq) has very rapidly become the new workhorse of modern biology providing an unprecedented global view on cellular diversity and heterogeneity. In particular, the structure of gene-gene expression correlation contains information on the underlying gene regulatory networks. However, interpretation of scRNA-seq data is challenging due to specific experimental error and biases that are unique to this kind of data including drop-out (or technical zeros). To deal with this problem several methods for imputation of zeros for scRNA-seq have been developed. However, it is not clear how these processing steps affect inference of genetic networks from single cell data. Here, we introduce Biomodelling.jl, a tool for generation of synthetic scRNA-seq data using multiscale modelling of stochastic gene regulatory networks in growing and dividing cells. Our tool produces realistic transcription data with a known ground truth network topology that can be used to benchmark different approaches for gene regulatory network inference. Using this tool we investigate the impact of different imputation methods on the performance of several network inference algorithms. Biomodelling.jl provides a versatile and useful tool for future development and benchmarking of network inference approaches using scRNA-seq data.

2020 ◽  
Vol 21 (11) ◽  
pp. 1054-1059
Author(s):  
Bin Yang ◽  
Yuehui Chen

: Reconstruction of gene regulatory networks (GRN) plays an important role in understanding the complexity, functionality and pathways of biological systems, which could support the design of new drugs for diseases. Because differential equation models are flexible androbust, these models have been utilized to identify biochemical reactions and gene regulatory networks. This paper investigates the differential equation models for reverse engineering gene regulatory networks. We introduce three kinds of differential equation models, including ordinary differential equation (ODE), time-delayed differential equation (TDDE) and stochastic differential equation (SDE). ODE models include linear ODE, nonlinear ODE and S-system model. We also discuss the evolutionary algorithms, which are utilized to search the optimal structures and parameters of differential equation models. This investigation could provide a comprehensive understanding of differential equation models, and lead to the discovery of novel differential equation models.


Author(s):  
Gourab Ghosh Roy ◽  
Nicholas Geard ◽  
Karin Verspoor ◽  
Shan He

Abstract Motivation Inferring gene regulatory networks (GRNs) from expression data is a significant systems biology problem. A useful inference algorithm should not only unveil the global structure of the regulatory mechanisms but also the details of regulatory interactions such as edge direction (from regulator to target) and sign (activation/inhibition). Many popular GRN inference algorithms cannot infer edge signs, and those that can infer signed GRNs cannot simultaneously infer edge directions or network cycles. Results To address these limitations of existing algorithms, we propose Polynomial Lasso Bagging (PoLoBag) for signed GRN inference with both edge directions and network cycles. PoLoBag is an ensemble regression algorithm in a bagging framework where Lasso weights estimated on bootstrap samples are averaged. These bootstrap samples incorporate polynomial features to capture higher-order interactions. Results demonstrate that PoLoBag is consistently more accurate for signed inference than state-of-the-art algorithms on simulated and real-world expression datasets. Availability and implementation Algorithm and data are freely available at https://github.com/gourabghoshroy/PoLoBag. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Marouen Ben Guebila ◽  
Daniel C Morgan ◽  
Kimberly Glass ◽  
Marieke Lydia Kuijjer ◽  
Dawn L DeMeo ◽  
...  

Gene regulatory network inference allows for the study of transcriptional control to identify the alteration of cellular processes in human diseases. Our group has developed several tools to model a variety of regulatory processes, including transcriptional (PANDA, SPIDER) and post-transcriptional (PUMA) gene regulation, and gene regulation in individual samples (LIONESS). These methods work by performing repeated operations on data matrices in order to integrate information across multiple lines of biological evidence. This limits their use for large-scale genomic studies due to the associated high computational burden. To address this limitation, we developed gpuZoo, which includes GPU-accelerated implementations of these algorithms. The runtime of the gpuZoo implementation in MATLAB and Python is up to 61 times faster and 28 times less expensive than the multi-core CPU implementation of the same methods. gpuZoo takes advantage of the modern multi-GPU device architecture to build a population of sample-specific gene regulatory networks with similar runtime and cost improvements by combining GPU acceleration with an efficient on-line derivation. Taken together, gpuZoo allows parallel and on-line gene regulatory network inference in large-scale genomic studies with cost-effective performance. gpuZoo is available in MATLAB through the netZooM package https://github.com/netZoo/netZooM and in Python through the netZooPy package https://github.com/netZoo/netZooPy.


2016 ◽  
Author(s):  
Kari Y. Lam ◽  
Zachary M. Westrick ◽  
Christian L. Müller ◽  
Lionel Christiaen ◽  
Richard Bonneau

AbstractUnderstanding gene regulatory networks is critical to understanding cellular differentiation and response to external stimuli. Methods for global network inference have been developed and applied to a variety of species. Most approaches consider the problem of network inference independently in each species, despite evidence that gene regulation can be conserved even in distantly related species. Further, network inference is often confined to single data-types (single platforms) and single cell types. We introduce a method for multi-source network inference that allows simultaneous estimation of gene regulatory networks in multiple species or biological processes through the introduction of priors based on known gene relationships such as orthology incorporated using fused regression. This approach improves network inference performance even when orthology mapping and conservation are incomplete. We refine this method by presenting an algorithm that extracts the true conserved subnetwork from a larger set of potentially conserved interactions and demonstrate the utility of our method in cross species network inference. Last, we demonstrate our method’s utility in learning from data collected on different experimental platforms.


2021 ◽  
Author(s):  
Lam-Ha Ly ◽  
Martin Vingron

AbstractDespite the advances in single-cell transcriptomics the reconstruction of gene regulatory networks remains challenging. Both the large amount of zero counts in experimental data and the lack of a consensus preprocessing pipeline for single-cell RNA-seq data make it hard to infer networks from transcriptome data. Data imputation can be applied in order to enhance gene-gene correlations and facilitate downstream data analysis. However, it is unclear what consequences imputation methods have on the reconstruction of gene regulatory networks.To study this question, we evaluate the effect of imputation methods on the performance and structure of the reconstructed networks in different experimental single-cell RNA-seq data sets. We use state-of-the-art algorithms for both imputation and network reconstruction and evaluate the difference in results before and after imputation. We observe an inflation of gene-gene correlations that affects the predicted network structures and may decrease the performance of network reconstruction in general. Yet, within the modest limits of achievable results, we also make a recommendation as to an advisable combination of algorithms, while warning against the indiscriminate use of imputation before network reconstruction in general.


Patterns ◽  
2021 ◽  
Vol 2 (9) ◽  
pp. 100332
Author(s):  
N. Alexia Raharinirina ◽  
Felix Peppert ◽  
Max von Kleist ◽  
Christof Schütte ◽  
Vikram Sunkara

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Neel Patel ◽  
William S. Bush

Abstract Background Transcriptional regulation is complex, requiring multiple cis (local) and trans acting mechanisms working in concert to drive gene expression, with disruption of these processes linked to multiple diseases. Previous computational attempts to understand the influence of regulatory mechanisms on gene expression have used prediction models containing input features derived from cis regulatory factors. However, local chromatin looping and trans-acting mechanisms are known to also influence transcriptional regulation, and their inclusion may improve model accuracy and interpretation. In this study, we create a general model of transcription factor influence on gene expression by incorporating both cis and trans gene regulatory features. Results We describe a computational framework to model gene expression for GM12878 and K562 cell lines. This framework weights the impact of transcription factor-based regulatory data using multi-omics gene regulatory networks to account for both cis and trans acting mechanisms, and measures of the local chromatin context. These prediction models perform significantly better compared to models containing cis-regulatory features alone. Models that additionally integrate long distance chromatin interactions (or chromatin looping) between distal transcription factor binding regions and gene promoters also show improved accuracy. As a demonstration of their utility, effect estimates from these models were used to weight cis-regulatory rare variants for sequence kernel association test analyses of gene expression. Conclusions Our models generate refined effect estimates for the influence of individual transcription factors on gene expression, allowing characterization of their roles across the genome. This work also provides a framework for integrating multiple data types into a single model of transcriptional regulation.


2020 ◽  
Author(s):  
Turki Turki ◽  
Y-h. Taguchi

AbstractAnalyzing single-cell pancreatic data would play an important role in understanding various metabolic diseases and health conditions. Due to the sparsity and noise present in such single-cell gene expression data, analyzing various functions related to the inference of gene regulatory networks, derived from single-cell data, remains difficult, thereby posing a barrier to the deepening of understanding of cellular metabolism. Since recent studies have led to the reliable inference of single-cell gene regulatory networks (SCGRNs), the challenge of discriminating between SCGRNs has now arisen. By accurately discriminating between SCGRNs (e.g., distinguishing SCGRNs of healthy pancreas from those of T2D pancreas), biologists would be able to annotate, organize, visualize, and identify common patterns of SCGRNs for metabolic diseases. Such annotated SCGRNs could play an important role in speeding up the process of building large data repositories. In this study, we aimed to contribute to the development of a novel deep learning (DL) application. First, we generated a dataset consisting of 224 SCGRNs belonging to both T2D and healthy pancreas and made it freely available. Next, we chose seven DL architectures, including VGG16, VGG19, Xception, ResNet50, ResNet101, DenseNet121, and DenseNet169, trained each of them on the dataset, and checked prediction based on a test set. We evaluated the DL architectures on an HP workstation platform with a single NVIDIA GeForce RTX 2080Ti GPU. Experimental results on the whole dataset, using several performance measures, demonstrated the superiority of VGG19 DL model in the automatic classification of SCGRNs, derived from the single-cell pancreatic data.


2020 ◽  
Author(s):  
Jianhao Peng ◽  
Ullas V. Chembazhi ◽  
Sushant Bangru ◽  
Ian M. Traniello ◽  
Auinash Kalsotra ◽  
...  

AbstractMotivationWith the use of single-cell RNA sequencing (scRNA-Seq) technologies, it is now possible to acquire gene expression data for each individual cell in samples containing up to millions of cells. These cells can be further grouped into different states along an inferred cell differentiation path, which are potentially characterized by similar, but distinct enough, gene regulatory networks (GRNs). Hence, it would be desirable for scRNA-Seq GRN inference methods to capture the GRN dynamics across cell states. However, current GRN inference methods produce a unique GRN per input dataset (or independent GRNs per cell state), failing to capture these regulatory dynamics.ResultsWe propose a novel single-cell GRN inference method, named SimiC, that jointly infers the GRNs corresponding to each state. SimiC models the GRN inference problem as a LASSO optimization problem with an added similarity constraint, on the GRNs associated to contiguous cell states, that captures the inter-cell-state homogeneity. We show on a mouse hepatocyte single-cell data generated after partial hepatectomy that, contrary to previous GRN methods for scRNA-Seq data, SimiC is able to capture the transcription factor (TF) dynamics across liver regeneration, as well as the cell-level behavior for the regulatory program of each TF across cell states. In addition, on a honey bee scRNA-Seq experiment, SimiC is able to capture the increased heterogeneity of cells on whole-brain tissue with respect to a regional analysis tissue, and the TFs associated specifically to each sequenced tissue.AvailabilitySimiC is written in Python and includes an R API. It can be downloaded from https://github.com/jianhao2016/[email protected], [email protected] informationSupplementary data are available at the code repository.


2019 ◽  
Author(s):  
Daniel Morgan ◽  
Matthew Studham ◽  
Andreas Tjärnberg ◽  
Holger Weishaupt ◽  
Fredrik J. Swartling ◽  
...  

AbstractThe gene regulatory network (GRN) of human cells encodes mechanisms to ensure proper functioning. However, if this GRN is dysregulated, the cell may enter into a disease state such as cancer. Understanding the GRN as a system can therefore help identify novel mechanisms underlying disease, which can lead to new therapies. Reliable inference of GRNs is however still a major challenge in systems biology.To deduce regulatory interactions relevant to cancer, we applied a recent computational inference framework to data from perturbation experiments in squamous carcinoma cell line A431. GRNs were inferred using several methods, and the false discovery rate was controlled by the NestBoot framework. We developed a novel approach to assess the predictiveness of inferred GRNs against validation data, despite the lack of a gold standard. The best GRN was significantly more predictive than the null model, both in crossvalidated benchmarks and for an independent dataset of the same genes under a different perturbation design. It agrees with many known links, in addition to predicting a large number of novel interactions from which a subset was experimentally validated. The inferred GRN captures regulatory interactions central to cancer-relevant processes and thus provides mechanistic insights that are useful for future cancer research.Data available at GSE125958Inferred GRNs and inference statistics available at https://dcolin.shinyapps.io/CancerGRN/ Software available at https://bitbucket.org/sonnhammergrni/genespider/src/BFECV/Author SummaryCancer is the second most common cause of death globally, and although cancer treatments have improved in recent years, we need to understand how regulatory mechanisms are altered in cancer to combat the disease efficiently. By applying gene perturbations and inference of gene regulatory networks to 40 genes known or suspected to have a role in cancer due to interactions with the oncogene MYC, we deduce their underlying regulatory interactions. Using a recent computational framework for inference together with a novel method for cross validation, we infer a reliable regulatory model of this system in a completely data driven manner, not reliant on literature or priors. The novel interactions add to the understanding of the progressive oncogenic regulatory process and may provide new targets for therapy.


Sign in / Sign up

Export Citation Format

Share Document