scholarly journals Effect of imputation on gene network reconstruction from single-cell RNA-seq data

2021 ◽  
Author(s):  
Lam-Ha Ly ◽  
Martin Vingron

AbstractDespite the advances in single-cell transcriptomics the reconstruction of gene regulatory networks remains challenging. Both the large amount of zero counts in experimental data and the lack of a consensus preprocessing pipeline for single-cell RNA-seq data make it hard to infer networks from transcriptome data. Data imputation can be applied in order to enhance gene-gene correlations and facilitate downstream data analysis. However, it is unclear what consequences imputation methods have on the reconstruction of gene regulatory networks.To study this question, we evaluate the effect of imputation methods on the performance and structure of the reconstructed networks in different experimental single-cell RNA-seq data sets. We use state-of-the-art algorithms for both imputation and network reconstruction and evaluate the difference in results before and after imputation. We observe an inflation of gene-gene correlations that affects the predicted network structures and may decrease the performance of network reconstruction in general. Yet, within the modest limits of achievable results, we also make a recommendation as to an advisable combination of algorithms, while warning against the indiscriminate use of imputation before network reconstruction in general.

Patterns ◽  
2021 ◽  
Vol 2 (9) ◽  
pp. 100332
Author(s):  
N. Alexia Raharinirina ◽  
Felix Peppert ◽  
Max von Kleist ◽  
Christof Schütte ◽  
Vikram Sunkara

2021 ◽  
Author(s):  
Klebea Carvalho ◽  
Elisabeth Rebboah ◽  
Camden Jansen ◽  
Katherine Williams ◽  
Andrew Dowey ◽  
...  

SummaryGene regulatory networks (GRNs) provide a powerful framework for studying cellular differentiation. However, it is less clear how GRNs encode cellular responses to everyday microenvironmental cues. Macrophages can be polarized and potentially repolarized based on environmental signaling. In order to identify the GRNs that drive macrophage polarization and the heterogeneous single-cell subpopulations that are present in the process, we used a high-resolution time course of bulk and single-cell RNA-seq and ATAC-seq assays of HL-60-derived macrophages polarized towards M1 or M2 over 24 hours. We identified transient M1 and M2 markers, including the main transcription factors that underlie polarization, and subpopulations of naive, transitional, and terminally polarized macrophages. We built bulk and single-cell polarization GRNs to compare the recovered interactions and found that each technology recovered only a subset of known interactions. Our data provide a resource to study the GRN of cellular maturation in response to microenvironmental stimuli in a variety of contexts in homeostasis and disease.


2018 ◽  
Author(s):  
Xiaojie Qiu ◽  
Arman Rahimzamani ◽  
Li Wang ◽  
Qi Mao ◽  
Timothy Durham ◽  
...  

AbstractSingle-cell transcriptome sequencing now routinely samples thousands of cells, potentially providing enough data to reconstruct causal gene regulatory networks from observational data. Here, we present Scribe, a toolkit for detecting and visualizing causal regulatory interactions between genes and explore the potential for single-cell experiments to power network reconstruction. Scribe employs Restricted Directed Information to determine causality by estimating the strength of information transferred from a potential regulator to its downstream target. We apply Scribe and other leading approaches for causal network reconstruction to several types of single-cell measurements and show that there is a dramatic drop in performance for "pseudotime” ordered single-cell data compared to true time series data. We demonstrate that performing causal inference requires temporal coupling between measurements. We show that methods such as “RNA velocity” restore some degree of coupling through an analysis of chromaffin cell fate commitment. These analyses therefore highlight an important shortcoming in experimental and computational methods for analyzing gene regulation at single-cell resolution and point the way towards overcoming it.


2021 ◽  
Author(s):  
Ayoub Lasri ◽  
Vahid Shahrezaei ◽  
Marc Sturrock

Single cell RNA-sequencing (scRNA-seq) has very rapidly become the new workhorse of modern biology providing an unprecedented global view on cellular diversity and heterogeneity. In particular, the structure of gene-gene expression correlation contains information on the underlying gene regulatory networks. However, interpretation of scRNA-seq data is challenging due to specific experimental error and biases that are unique to this kind of data including drop-out (or technical zeros). To deal with this problem several methods for imputation of zeros for scRNA-seq have been developed. However, it is not clear how these processing steps affect inference of genetic networks from single cell data. Here, we introduce Biomodelling.jl, a tool for generation of synthetic scRNA-seq data using multiscale modelling of stochastic gene regulatory networks in growing and dividing cells. Our tool produces realistic transcription data with a known ground truth network topology that can be used to benchmark different approaches for gene regulatory network inference. Using this tool we investigate the impact of different imputation methods on the performance of several network inference algorithms. Biomodelling.jl provides a versatile and useful tool for future development and benchmarking of network inference approaches using scRNA-seq data.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Serrano-Ron ◽  
Javier Cabrera ◽  
Pablo Perez-Garcia ◽  
Miguel A. Moreno-Risueno

Over the last decades, research on postembryonic root development has been facilitated by “omics” technologies. Among these technologies, microarrays first, and RNA sequencing (RNA-seq) later, have provided transcriptional information on the underlying molecular processes establishing the basis of System Biology studies in roots. Cell fate specification and development have been widely studied in the primary root, which involved the identification of many cell type transcriptomes and the reconstruction of gene regulatory networks (GRN). The study of lateral root (LR) development has not been an exception. However, the molecular mechanisms regulating cell fate specification during LR formation remain largely unexplored. Recently, single-cell RNA-seq (scRNA-seq) studies have addressed the specification of tissues from stem cells in the primary root. scRNA-seq studies are anticipated to be a useful approach to decipher cell fate specification and patterning during LR formation. In this review, we address the different scRNA-seq strategies used both in plants and animals and how we could take advantage of scRNA-seq to unravel new regulatory mechanisms and reconstruct GRN. In addition, we discuss how to integrate scRNA-seq results with previous RNA-seq datasets and GRN. We also address relevant findings obtained through single-cell based studies and how LR developmental studies could be facilitated by scRNA-seq approaches and subsequent GRN inference. The use of single-cell approaches to investigate LR formation could help to decipher fundamental biological mechanisms such as cell memory, synchronization, polarization, or pluripotency.


2019 ◽  
Author(s):  
Christopher A Jackson ◽  
Dayanne M Castro ◽  
Giuseppe-Antonio Saldi ◽  
Richard Bonneau ◽  
David Gresham

AbstractUnderstanding how gene expression programs are controlled requires identifying regulatory relationships between transcription factors and target genes. Gene regulatory networks are typically constructed from gene expression data acquired following genetic perturbation or environmental stimulus. Single-cell RNA sequencing (scRNAseq) captures the gene expression state of thousands of individual cells in a single experiment, offering advantages in combinatorial experimental design, large numbers of independent measurements, and accessing the interaction between the cell cycle and environmental responses that is hidden by population-level analysis of gene expression. To leverage these advantages, we developed a method for transcriptionally barcoding gene deletion mutants and performing scRNAseq in budding yeast (Saccharomyces cerevisiae). We pooled diverse genotypes in 11 different environmental conditions and determined their expression state by sequencing 38,285 individual cells. We developed, and benchmarked, a framework for learning gene regulatory networks from scRNAseq data that incorporates multitask learning and constructed a global gene regulatory network comprising 12,018 interactions. Our study establishes a general approach to gene regulatory network reconstruction from scRNAseq data that can be employed in any organism.


2020 ◽  
Author(s):  
Turki Turki ◽  
Y-h. Taguchi

AbstractAnalyzing single-cell pancreatic data would play an important role in understanding various metabolic diseases and health conditions. Due to the sparsity and noise present in such single-cell gene expression data, analyzing various functions related to the inference of gene regulatory networks, derived from single-cell data, remains difficult, thereby posing a barrier to the deepening of understanding of cellular metabolism. Since recent studies have led to the reliable inference of single-cell gene regulatory networks (SCGRNs), the challenge of discriminating between SCGRNs has now arisen. By accurately discriminating between SCGRNs (e.g., distinguishing SCGRNs of healthy pancreas from those of T2D pancreas), biologists would be able to annotate, organize, visualize, and identify common patterns of SCGRNs for metabolic diseases. Such annotated SCGRNs could play an important role in speeding up the process of building large data repositories. In this study, we aimed to contribute to the development of a novel deep learning (DL) application. First, we generated a dataset consisting of 224 SCGRNs belonging to both T2D and healthy pancreas and made it freely available. Next, we chose seven DL architectures, including VGG16, VGG19, Xception, ResNet50, ResNet101, DenseNet121, and DenseNet169, trained each of them on the dataset, and checked prediction based on a test set. We evaluated the DL architectures on an HP workstation platform with a single NVIDIA GeForce RTX 2080Ti GPU. Experimental results on the whole dataset, using several performance measures, demonstrated the superiority of VGG19 DL model in the automatic classification of SCGRNs, derived from the single-cell pancreatic data.


2019 ◽  
Vol 36 (1) ◽  
pp. 197-204 ◽  
Author(s):  
Xin Zhou ◽  
Xiaodong Cai

Abstract Motivation Gene regulatory networks (GRNs) of the same organism can be different under different conditions, although the overall network structure may be similar. Understanding the difference in GRNs under different conditions is important to understand condition-specific gene regulation. When gene expression and other relevant data under two different conditions are available, they can be used by an existing network inference algorithm to estimate two GRNs separately, and then to identify the difference between the two GRNs. However, such an approach does not exploit the similarity in two GRNs, and may sacrifice inference accuracy. Results In this paper, we model GRNs with the structural equation model (SEM) that can integrate gene expression and genetic perturbation data, and develop an algorithm named fused sparse SEM (FSSEM), to jointly infer GRNs under two conditions, and then to identify difference of the two GRNs. Computer simulations demonstrate that the FSSEM algorithm outperforms the approaches that estimate two GRNs separately. Analysis of a dataset of lung cancer and another dataset of gastric cancer with FSSEM inferred differential GRNs in cancer versus normal tissues, whose genes with largest network degrees have been reported to be implicated in tumorigenesis. The FSSEM algorithm provides a valuable tool for joint inference of two GRNs and identification of the differential GRN under two conditions. Availability and implementation The R package fssemR implementing the FSSEM algorithm is available at https://github.com/Ivis4ml/fssemR.git. It is also available on CRAN. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shoujun Gu ◽  
Rafal Olszewski ◽  
Ian Taukulis ◽  
Zheng Wei ◽  
Daniel Martin ◽  
...  

Abstract The stria vascularis (SV) in the cochlea generates and maintains the endocochlear potential, thereby playing a pivotal role in normal hearing. Knowing transcriptional profiles and gene regulatory networks of SV cell types establishes a basis for studying the mechanism underlying SV-related hearing loss. While we have previously characterized the expression profiles of major SV cell types in the adult mouse, transcriptional profiles of rare SV cell types remained elusive due to the limitation of cell capture in single-cell RNA-Seq. The role of these rare cell types in the homeostatic function of the adult SV remain largely undefined. In this study, we performed single-nucleus RNA-Seq on the adult mouse SV in conjunction with sample preservation treatments during the isolation steps. We distinguish rare SV cell types, including spindle cells and root cells, from other cell types, and characterize their transcriptional profiles. Furthermore, we also identify and validate novel specific markers for these rare SV cell types. Finally, we identify homeostatic gene regulatory networks within spindle and root cells, establishing a basis for understanding the functional roles of these cells in hearing. These novel findings will provide new insights for future work in SV-related hearing loss and hearing fluctuation.


Sign in / Sign up

Export Citation Format

Share Document