scholarly journals Transcriptome profiling of the ventral pallidum reveals a role for pallido-thalamic neurons in cocaine reward

2021 ◽  
Author(s):  
Michel Engeln ◽  
Megan E Fox ◽  
Ramesh Chandra ◽  
Eric Y Choi ◽  
Hyungwoo Nam ◽  
...  

Psychostimulant exposure alters the activity of ventral pallidum (VP) projection-neurons. However, the molecular underpinnings of these circuit dysfunctions are unclear. Using RNA-sequencing followed by circuit-specific gene expression assays, we revealed a key role for the VP to mediodorsal thalamus (VP-MDT) projection neurons in cocaine-related behaviors in mice. Our analyses demonstrated that the transcription factor Nr4a1 bidirectionally modulated dendritic spine dynamics in VP-MDT neurons and positively regulated pathological drug use.

2016 ◽  
Vol 25 (4) ◽  
pp. 943-958 ◽  
Author(s):  
Yun Huang ◽  
Frédéric J. J. Chain ◽  
Mahesh Panchal ◽  
Christophe Eizaguirre ◽  
Martin Kalbe ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
pp. 71-86 ◽  
Author(s):  
Huiran Liu ◽  
Gang Li ◽  
Xiujuan Yang ◽  
Hendrik N.J. Kuijer ◽  
Wanqi Liang ◽  
...  

Author(s):  
Harikrishna Nakshatri ◽  
Sunil Badve

Breast cancer is a heterogeneous disease and classification is important for clinical management. At least five subtypes can be identified based on unique gene expression patterns; this subtype classification is distinct from the histopathological classification. The transcription factor network(s) required for the specific gene expression signature in each of these subtypes is currently being elucidated. The transcription factor network composed of the oestrogen (estrogen) receptor α (ERα), FOXA1 and GATA3 may control the gene expression pattern in luminal subtype A breast cancers. Breast cancers that are dependent on this network correspond to well-differentiated and hormone-therapy-responsive tumours with good prognosis. In this review, we discuss the interplay between these transcription factors with a particular emphasis on FOXA1 structure and function, and its ability to control ERα function. Additionally, we discuss modulators of FOXA1 function, ERα–FOXA1–GATA3 downstream targets, and potential therapeutic agents that may increase differentiation through FOXA1.


2010 ◽  
Vol 9 (4) ◽  
pp. 514-531 ◽  
Author(s):  
Barbara Heise ◽  
Julia van der Felden ◽  
Sandra Kern ◽  
Mario Malcher ◽  
Stefan Brückner ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, the TEA transcription factor Tec1 is known to regulate target genes together with a second transcription factor, Ste12. Tec1-Ste12 complexes can activate transcription through Tec1 binding sites (TCSs), which can be further combined with Ste12 binding sites (PREs) for cooperative DNA binding. However, previous studies have hinted that Tec1 might regulate transcription also without Ste12. Here, we show that in vivo, physiological amounts of Tec1 are sufficient to stimulate TCS-mediated gene expression and transcription of the FLO11 gene in the absence of Ste12. In vitro, Tec1 is able to bind TCS elements with high affinity and specificity without Ste12. Furthermore, Tec1 contains a C-terminal transcriptional activation domain that confers Ste12-independent activation of TCS-regulated gene expression. On a genome-wide scale, we identified 302 Tec1 target genes that constitute two distinct classes. A first class of 254 genes is regulated by Tec1 in a Ste12-dependent manner and is enriched for genes that are bound by Tec1 and Ste12 in vivo. In contrast, a second class of 48 genes can be regulated by Tec1 independently of Ste12 and is enriched for genes that are bound by the stress transcription factors Yap6, Nrg1, Cin5, Skn7, Hsf1, and Msn4. Finally, we find that combinatorial control by Tec1-Ste12 complexes stabilizes Tec1 against degradation. Our study suggests that Tec1 is able to regulate TCS-mediated gene expression by Ste12-dependent and Ste12-independent mechanisms that enable promoter-specific transcriptional control.


2007 ◽  
Vol 27 (11) ◽  
pp. 4082-4092 ◽  
Author(s):  
Andrew J. Bingham ◽  
Lezanne Ooi ◽  
Lukasz Kozera ◽  
Edward White ◽  
Ian C. Wood

ABSTRACT Cardiac hypertrophy is associated with a dramatic change in the gene expression profile of cardiac myocytes. Many genes important during development of the fetal heart but repressed in the adult tissue are reexpressed, resulting in gross physiological changes that lead to arrhythmias, cardiac failure, and sudden death. One transcription factor thought to be important in repressing the expression of fetal genes in the adult heart is the transcriptional repressor REST (repressor element 1-silencing transcription factor). Although REST has been shown to repress several fetal cardiac genes and inhibition of REST function is sufficient to induce cardiac hypertrophy, the molecular mechanisms employed in this repression are not known. Here we show that continued REST expression prevents increases in the levels of the BNP (Nppb) and ANP (Nppa) genes, encoding brain and atrial natriuretic peptides, in adult rat ventricular myocytes in response to endothelin-1 and that inhibition of REST results in increased expression of these genes in H9c2 cells. Increased expression of Nppb and Nppa correlates with increased histone H4 acetylation and histone H3 lysine 4 methylation of promoter-proximal regions of these genes. Furthermore, using deletions of individual REST repression domains, we show that the combined activities of two domains of REST are required to efficiently repress transcription of the Nppb gene; however, a single repression domain is sufficient to repress the Nppa gene. These data provide some of the first insights into the molecular mechanism that may be important for the changes in gene expression profile seen in cardiac hypertrophy.


2010 ◽  
Vol 62 (7) ◽  
pp. 421-429 ◽  
Author(s):  
Naomi Shimokawa ◽  
Chiharu Nishiyama ◽  
Nobuhiro Nakano ◽  
Keiko Maeda ◽  
Ryuyo Suzuki ◽  
...  

1994 ◽  
Vol 14 (11) ◽  
pp. 7517-7526 ◽  
Author(s):  
H S Ip ◽  
D B Wilson ◽  
M Heikinheimo ◽  
Z Tang ◽  
C N Ting ◽  
...  

The unique contractile phenotype of cardiac myocytes is determined by the expression of a set of cardiac muscle-specific genes. By analogy to other mammalian developmental systems, it is likely that the coordinate expression of cardiac genes is controlled by lineage-specific transcription factors that interact with promoter and enhancer elements in the transcriptional regulatory regions of these genes. Although previous reports have identified several cardiac muscle-specific transcriptional elements, relatively little is known about the lineage-specific transcription factors that regulate these elements. In this report, we demonstrate that the slow/cardiac muscle-specific troponin C (cTnC) enhancer contains a specific binding site for the lineage-restricted zinc finger transcription factor GATA-4. This GATA-4-binding site is required for enhancer activity in primary cardiac myocytes. Moreover, the cTnC enhancer can be transactivated by overexpression of GATA-4 in non-cardiac muscle cells such as NIH 3T3 cells. In situ hybridization studies demonstrate that GATA-4 and cTnC have overlapping patterns of expression in the hearts of postimplantation mouse embryos and that GATA-4 gene expression precedes cTnC expression. Indirect immunofluorescence reveals GATA-4 expression in cultured cardiac myocytes from neonatal rats. Taken together, these results are consistent with a model in which GATA-4 functions to direct tissue-specific gene expression during mammalian cardiac development.


Sign in / Sign up

Export Citation Format

Share Document