scholarly journals The TEA Transcription Factor Tec1 Confers Promoter-Specific Gene Regulation by Ste12-Dependent and -Independent Mechanisms

2010 ◽  
Vol 9 (4) ◽  
pp. 514-531 ◽  
Author(s):  
Barbara Heise ◽  
Julia van der Felden ◽  
Sandra Kern ◽  
Mario Malcher ◽  
Stefan Brückner ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, the TEA transcription factor Tec1 is known to regulate target genes together with a second transcription factor, Ste12. Tec1-Ste12 complexes can activate transcription through Tec1 binding sites (TCSs), which can be further combined with Ste12 binding sites (PREs) for cooperative DNA binding. However, previous studies have hinted that Tec1 might regulate transcription also without Ste12. Here, we show that in vivo, physiological amounts of Tec1 are sufficient to stimulate TCS-mediated gene expression and transcription of the FLO11 gene in the absence of Ste12. In vitro, Tec1 is able to bind TCS elements with high affinity and specificity without Ste12. Furthermore, Tec1 contains a C-terminal transcriptional activation domain that confers Ste12-independent activation of TCS-regulated gene expression. On a genome-wide scale, we identified 302 Tec1 target genes that constitute two distinct classes. A first class of 254 genes is regulated by Tec1 in a Ste12-dependent manner and is enriched for genes that are bound by Tec1 and Ste12 in vivo. In contrast, a second class of 48 genes can be regulated by Tec1 independently of Ste12 and is enriched for genes that are bound by the stress transcription factors Yap6, Nrg1, Cin5, Skn7, Hsf1, and Msn4. Finally, we find that combinatorial control by Tec1-Ste12 complexes stabilizes Tec1 against degradation. Our study suggests that Tec1 is able to regulate TCS-mediated gene expression by Ste12-dependent and Ste12-independent mechanisms that enable promoter-specific transcriptional control.

2021 ◽  
Vol 4 (11) ◽  
pp. e202101075
Author(s):  
Stephen Henderson ◽  
Venu Pullabhatla ◽  
Arnulf Hertweck ◽  
Emanuele de Rinaldis ◽  
Javier Herrero ◽  
...  

Gene expression programs controlled by lineage-determining transcription factors are often conserved between species. However, infectious diseases have exerted profound evolutionary pressure, and therefore the genes regulated by immune-specific transcription factors might be expected to exhibit greater divergence. T-bet (Tbx21) is the immune-specific, lineage-specifying transcription factor for T helper type I (Th1) immunity, which is fundamental for the immune response to intracellular pathogens but also underlies inflammatory diseases. We compared T-bet genomic targets between mouse and human CD4+ T cells and correlated T-bet binding patterns with species-specific gene expression. Remarkably, we found that the majority of T-bet target genes are conserved between mouse and human, either via preservation of binding sites or via alternative binding sites associated with transposon-linked insertion. Species-specific T-bet binding was associated with differences in transcription factor–binding motifs and species-specific expression of associated genes. These results provide a genome-wide cross-species comparison of Th1 gene regulation that will enable more accurate translation of genetic targets and therapeutics from pre-clinical models of inflammatory and infectious diseases and cancer into human clinical trials.


2020 ◽  
Author(s):  
Maud Fagny ◽  
Marieke Lydia Kuijjer ◽  
Maike Stam ◽  
Johann Joets ◽  
Olivier Turc ◽  
...  

AbstractEnhancers are important regulators of gene expression during numerous crucial processes including tissue differentiation across development. In plants, their recent molecular characterization revealed their capacity to activate the expression of several target genes through the binding of transcription factors. Nevertheless, identifying these target genes at a genome-wide level remains a challenge, in particular in species with large genomes, where enhancers and target genes can be hundreds of kilobases away. Therefore, the contribution of enhancers to regulatory network is still poorly understood in plants. In this study, we investigate the enhancer-driven regulatory network of two maize tissues at different stages: leaves at seedling stage and husks (bracts) at flowering. Using a systems biology approach, we integrate genomic, epigenomic and transcriptomic data to model the regulatory relationship between transcription factors and their potential target genes. We identify regulatory modules specific to husk and V2-IST, and show that they are involved in distinct functions related to the biology of each tissue. We evidence enhancers exhibiting binding sites for two distinct transcription factor families (DOF and AP2/ERF) that drive the tissue-specificity of gene expression in seedling immature leaf and husk. Analysis of the corresponding enhancer sequences reveals that two different transposable element families (TIR transposon Mutator and MITE Pif/Harbinger) have shaped the regulatory network in each tissue, and that MITEs have provided new transcription factor binding sites that are involved in husk tissue-specificity.SignificanceEnhancers play a major role in regulating tissue-specific gene expression in higher eukaryotes, including angiosperms. While molecular characterization of enhancers has improved over the past years, identifying their target genes at the genome-wide scale remains challenging. Here, we integrate genomic, epigenomic and transcriptomic data to decipher the tissue-specific gene regulatory network controlled by enhancers at two different stages of maize leaf development. Using a systems biology approach, we identify transcription factor families regulating gene tissue-specific expression in husk and seedling leaves, and characterize the enhancers likely to be involved. We show that a large part of maize enhancers is derived from transposable elements, which can provide novel transcription factor binding sites crucial to the regulation of tissue-specific biological functions.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2021 ◽  
Vol 49 (7) ◽  
pp. 3856-3875
Author(s):  
Marina Kulik ◽  
Melissa Bothe ◽  
Gözde Kibar ◽  
Alisa Fuchs ◽  
Stefanie Schöne ◽  
...  

Abstract The glucocorticoid (GR) and androgen (AR) receptors execute unique functions in vivo, yet have nearly identical DNA binding specificities. To identify mechanisms that facilitate functional diversification among these transcription factor paralogs, we studied them in an equivalent cellular context. Analysis of chromatin and sequence suggest that divergent binding, and corresponding gene regulation, are driven by different abilities of AR and GR to interact with relatively inaccessible chromatin. Divergent genomic binding patterns can also be the result of subtle differences in DNA binding preference between AR and GR. Furthermore, the sequence composition of large regions (>10 kb) surrounding selectively occupied binding sites differs significantly, indicating a role for the sequence environment in guiding AR and GR to distinct binding sites. The comparison of binding sites that are shared shows that the specificity paradox can also be resolved by differences in the events that occur downstream of receptor binding. Specifically, shared binding sites display receptor-specific enhancer activity, cofactor recruitment and changes in histone modifications. Genomic deletion of shared binding sites demonstrates their contribution to directing receptor-specific gene regulation. Together, these data suggest that differences in genomic occupancy as well as divergence in the events that occur downstream of receptor binding direct functional diversification among transcription factor paralogs.


2002 ◽  
Vol 282 (1) ◽  
pp. R173-R183 ◽  
Author(s):  
Min Nian ◽  
Jun Gu ◽  
David M. Irwin ◽  
Daniel J. Drucker

The glucagon-like peptides (GLPs) are synthesized and secreted in a nutrient-dependent manner in rodents; however, the factors regulating human GLP-1 and GLP-2 biosynthesis remain unclear. To understand how nutrients regulate human proglucagon gene expression, we studied the expression of a human proglucagon promoter-growth hormone (GH) transgene in 1.6 human glucagon-GH transgenic mice. Fasting-refeeding significantly decreased and increased the levels of circulating mouse insulin and transgene-derived hGH ( P < 0.05 fasting vs. refeeding) and decreased and upregulated, respectively, the levels of endogenous mouse proglucagon RNA in the ileum but not in the jejunum or colon. High-fiber feeding significantly increased the levels of glucose-stimulated circulating hGH and upregulated levels of mouse intestinal proglucagon gene expression in the jejunum, ileum, and colon ( P < 0.05, 0 vs. 30% fiber diet). In contrast, neither fasting-refeeding nor a high-fiber diet upregulated the expression of the human proglucagon promoter-hGH transgene. These findings demonstrate that human proglucagon gene regulatory sequences specifying tissue-specific expression in gut endocrine cells are not sufficient for recognition of energy-derived signals regulating murine glucagon gene expression in enteroendocrine cells in vivo.


2008 ◽  
Vol 105 (46) ◽  
pp. 18012-18017 ◽  
Author(s):  
Jun Kohyama ◽  
Takuro Kojima ◽  
Eriko Takatsuka ◽  
Toru Yamashita ◽  
Jun Namiki ◽  
...  

Neural stem/progenitor cells (NSCs/NPCs) give rise to neurons, astrocytes, and oligodendrocytes. It has become apparent that intracellular epigenetic modification including DNA methylation, in concert with extracellular cues such as cytokine signaling, is deeply involved in fate specification of NSCs/NPCs by defining cell-type specific gene expression. However, it is still unclear how differentiated neural cells retain their specific attributes by repressing cellular properties characteristic of other lineages. In previous work we have shown that methyl-CpG binding protein transcriptional repressors (MBDs), which are expressed predominantly in neurons in the central nervous system, inhibit astrocyte-specific gene expression by binding to highly methylated regions of their target genes. Here we report that oligodendrocytes, which do not express MBDs, can transdifferentiate into astrocytes both in vitro (cytokine stimulation) and in vivo (ischemic injury) through the activation of the JAK/STAT signaling pathway. These findings suggest that differentiation plasticity in neural cells is regulated by cell-intrinsic epigenetic mechanisms in collaboration with ambient cell-extrinsic cues.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 650-650
Author(s):  
Cailin Collins ◽  
Jingya Wang ◽  
Joel Bronstein ◽  
Jay L. Hess

Abstract Abstract 650 HOXA9 is a homeodomain-containing transcription factor that plays important roles in both development and hematopoiesis. Deregulation of HOXA9 occurs in a variety of acute lymphoid and myeloid leukemias and plays a key role in their pathogenesis. More than 50% of acute myeloid leukemia (AML) cases show up-regulation of HOXA9, which correlates strongly with poor prognosis. Nearly all cases of AML with mixed lineage leukemia (MLL) translocations have increased HOXA9 expression, as well as cases with mutation of the nucleophosmin gene NPM1, overexpression of CDX2, and fusions of NUP98. Despite the crucial role that HOXA9 plays in development, hematopoiesis and leukemia, its transcriptional targets and mechanisms of action are poorly understood. Previously we identified Hoxa9 and Meis1 binding sites in myeloblastic cells, profiled their epigenetic modifications, and identified the target genes regulated by Hoxa9. Hoxa9 and Meis1 co-bind at hundreds of promoter distal, highly evolutionarily conserved sites showing high levels of histone H3K4 monomethylation and CBP/p300 binding characteristic of enhancers. Hoxa9 association at these sites correlates strongly with increases in histone H3K27 acetylation and activation of downstream target genes, including many proleukemic gene loci. De novo motif analysis of Hoxa9 binding sites shows a marked enrichment of motifs for the transcription factors in the C/EBP and ETS families, and C/ebpα and the ETS transcription factor Pu.1 were found to cobind at Hoxa9-regulated enhancers. Both C/ebpα and Pu.1 are known to play critical roles in the establishment of functional enhancers during normal myeloid development and are mutated or otherwise deregulated in various myeloid leukemias. To determine the importance of co-association of Hoxa9, C/ebpα and Pu.1 at myeloid enhancers, we generated cell lines from C/ebpα and Pu.1 conditional knockout mice (kindly provided by Dr. Daniel Tenen, Harvard University) by immortalization with Hoxa9 and Meis1. In addition we transformed bone marrow with a tamoxifen-regulated form of Hoxa9. Strikingly, loss of C/ebpα or Pu.1, or inactivation of Hoxa9, blocks proliferation and leads to myeloid differentiation. ChIP experiments show that both C/ebpα and Pu.1 remain bound to Hoxa9 binding sites in the absence of Hoxa9. After the loss of Pu.1, both Hoxa9 and C/ebpα dissociate from Hoxa9 binding sites with a corresponding decrease in target gene expression. In contrast, loss of C/ebpα does not lead to an immediate decrease in either Hoxa9 or Pu.1 binding, suggesting that C/ebpα may be playing a regulatory as opposed to a scaffolding role at enhancers. Current work focuses on performing ChIP-seq analysis to assess how C/ebpα and Pu.1 affect Hoxa9 and Meis1 binding and epigenetic modifications genome-wide, and in vivo leukemogenesis assays to confirm the requirement of both Pu.1 and C/ebpα in the establishment and maintenance of leukemias with high levels of Hoxa9. Collectively, our findings implicate C/ebpα and Pu.1 as members of a critical transcription factor network required for Hoxa9-mediated transcriptional regulation in leukemia. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 4 (2) ◽  
pp. 1-23
Author(s):  
Amitava Karmaker ◽  
Kihoon Yoon ◽  
Mark Doderer ◽  
Russell Kruzelock ◽  
Stephen Kwek

Summary Revealing the complex interaction between trans- and cis-regulatory elements and identifying these potential binding sites are fundamental problems in understanding gene expression. The progresses in ChIP-chip technology facilitate identifying DNA sequences that are recognized by a specific transcription factor. However, protein-DNA binding is a necessary, but not sufficient, condition for transcription regulation. We need to demonstrate that their gene expression levels are correlated to further confirm regulatory relationship. Here, instead of using a linear correlation coefficient, we used a non-linear function that seems to better capture possible regulatory relationships. By analyzing tissue-specific gene expression profiles of human and mouse, we delineate a list of pairs of transcription factor and gene with highly correlated expression levels, which may have regulatory relationships. Using two closely-related species (human and mouse), we perform comparative genome analysis to cross-validate the quality of our prediction. Our findings are confirmed by matching publicly available TFBS databases (like TRANFAC and ConSite) and by reviewing biological literature. For example, according to our analysis, 80% and 85.71% of the targets genes associated with E2F5 and RELB transcription factors have the corresponding known binding sites. We also substantiated our results on some oncogenes with the biomedical literature. Moreover, we performed further analysis on them and found that BCR and DEK may be regulated by some common transcription factors. Similar results for BTG1, FCGR2B and LCK genes were also reported.


2013 ◽  
Vol 289 (3) ◽  
pp. 1313-1328 ◽  
Author(s):  
Preeti Ramadoss ◽  
Brian J. Abraham ◽  
Linus Tsai ◽  
Yiming Zhou ◽  
Ricardo H. Costa-e-Sousa ◽  
...  

Triiodothyronine (T3) regulates key metabolic processes in the liver through the thyroid hormone receptor, TRβ1. However, the number of known target genes directly regulated by TRβ1 is limited, and the mechanisms by which positive and especially negative transcriptional regulation occur are not well understood. To characterize the TRβ1 cistrome in vivo, we expressed a biotinylated TRβ1 in hypo- and hyperthyroid mouse livers, used ChIP-seq to identify genomic TRβ1 targets, and correlated these data with gene expression changes. As with other nuclear receptors, the majority of TRβ1 binding sites were not in proximal promoters but in the gene body of known genes. Remarkably, T3 can dictate changes in TRβ1 binding, with strong correlation to T3-induced gene expression changes, suggesting that differential TRβ1 binding regulates transcriptional outcome. Additionally, DR-4 and DR-0 motifs were significantly enriched at binding sites where T3 induced an increase or decrease in TRβ1 binding, respectively, leading to either positive or negative regulation by T3. Taken together, the results of this study provide new insights into the mechanisms of transcriptional regulation by TRβ1 in vivo.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 372 ◽  
Author(s):  
Delasa Aghamirzaie ◽  
Karthik Raja Velmurugan ◽  
Shuchi Wu ◽  
Doaa Altarawy ◽  
Lenwood S. Heath ◽  
...  

Motivation: The increasing availability of chromatin immunoprecipitation sequencing (ChIP-Seq) data enables us to learn more about the action of transcription factors in the regulation of gene expression. Even though in vivo transcriptional regulation often involves the concerted action of more than one transcription factor, the format of each individual ChIP-Seq dataset usually represents the action of a single transcription factor. Therefore, a relational database in which available ChIP-Seq datasets are curated is essential. Results: We present Expresso (database and webserver) as a tool for the collection and integration of available Arabidopsis ChIP-Seq peak data, which in turn can be linked to a user’s gene expression data. Known target genes of transcription factors were identified by motif analysis of publicly available GEO ChIP-Seq data sets. Expresso currently provides three services: 1) Identification of target genes of a given transcription factor; 2) Identification of transcription factors that regulate a gene of interest; 3) Computation of correlation between the gene expression of transcription factors and their target genes. Availability: Expresso is freely available at http://bioinformatics.cs.vt.edu/expresso/


Sign in / Sign up

Export Citation Format

Share Document