scholarly journals Invariant neural subspaces maintained by feedback modulation

2021 ◽  
Author(s):  
Laura Bella Naumann ◽  
Joram Keijser ◽  
Henning Sprekeler

Sensory systems reliably process incoming stimuli in spite of changes in context. Most recent models accredit this context invariance to an extraction of increasingly complex sensory features in hierarchical feedforward networks. Here, we study how context-invariant representations can be established by feedback rather than feedforward processing. We show that feedforward neural networks modulated by feedback can dynamically generate invariant sensory representations. The required feedback can be implemented as a slow and spatially diffuse gain modulation. The invariance is not present on the level of individual neurons, but emerges only on the population level. Mechanistically, the feedback modulation dynamically reorients the manifold of neural activity and thereby maintains an invariant neural subspace in spite of contextual variations. Our results highlight the importance of population-level analyses for understanding the role of feedback in flexible sensory processing.

2019 ◽  
Author(s):  
K. Cora Ames ◽  
Mark M. Churchland

AbstractPrimary motor cortex (M1) has lateralized outputs, yet M1 neurons can be active during movements of either arm. What is the nature and role of activity in the two hemispheres? When one arm moves, are the contralateral and ipsilateral cortices performing similar or different computations? When both hemispheres are active, how does the brain avoid moving the “wrong” arm? We recorded muscle and neural activity bilaterally while two male monkeys (Macaca mulatta) performed a cycling task with one or the other arm. Neurons in both hemispheres were active during movements of either arm. Yet response patterns were arm-dependent, raising two possibilities. First, the nature of neural signals may differ (e.g., be high versus low-level) depending on whether the ipsilateral or contralateral arm is used. Second, the same population-level signals may be present regardless of the arm being used, but be reflected differently at the individual-neuron level. The data supported this second hypothesis. Muscle activity could be predicted by neural activity in either hemisphere. More broadly, we failed to find signals unique to the hemisphere contralateral to the moving arm. Yet if the same signals are shared across hemispheres, how do they avoid impacting the wrong arm? We found that activity related to the two arms occupied distinct, orthogonal subspaces of population activity. As a consequence, a linear decode of contralateral muscle activity naturally ignored signals related to the ipsilateral arm. Thus, information regarding the two arms is shared across hemispheres and neurons, but partitioned at the population level.


Author(s):  
Bruno and

Multisensory interactions in perception are pervasive and fundamental, as we have documented throughout this book. In this final chapter, we propose that contemporary work on multisensory processing is a paradigm shift in perception science, calling for a radical reconsideration of empirical and theoretical questions within an entirely new perspective. In making our case, we emphasize that multisensory perception is the norm, not the exception, and we remark that multisensory interactions can occur early in sensory processing. We reiterate the key notions that multisensory interactions come in different kinds and that principles of multisensory processing must be considered when tackling multisensory daily-life problems. We discuss the role of unisensory processing in a multisensory world, and we conclude by suggesting future directions for the multisensory field.


Oecologia ◽  
2021 ◽  
Author(s):  
Peng He ◽  
Pierre-Olivier Montiglio ◽  
Marius Somveille ◽  
Mauricio Cantor ◽  
Damien R. Farine

AbstractBy shaping where individuals move, habitat configuration can fundamentally structure animal populations. Yet, we currently lack a framework for generating quantitative predictions about the role of habitat configuration in modulating population outcomes. To address this gap, we propose a modelling framework inspired by studies using networks to characterize habitat connectivity. We first define animal habitat networks, explain how they can integrate information about the different configurational features of animal habitats, and highlight the need for a bottom–up generative model that can depict realistic variations in habitat potential connectivity. Second, we describe a model for simulating animal habitat networks (available in the R package AnimalHabitatNetwork), and demonstrate its ability to generate alternative habitat configurations based on empirical data, which forms the basis for exploring the consequences of alternative habitat structures. Finally, we lay out three key research questions and demonstrate how our framework can address them. By simulating the spread of a pathogen within a population, we show how transmission properties can be impacted by both local potential connectivity and landscape-level characteristics of habitats. Our study highlights the importance of considering the underlying habitat configuration in studies linking social structure with population-level outcomes.


The Lancet ◽  
2019 ◽  
Vol 394 ◽  
pp. S28
Author(s):  
Heather Brown ◽  
Luke Munford ◽  
Anna Wilding ◽  
Tomos Robinson ◽  
Paula Holland ◽  
...  

2018 ◽  
Vol 115 (48) ◽  
pp. 12313-12318 ◽  
Author(s):  
Gang Wu ◽  
Marc D. Ruben ◽  
Robert E. Schmidt ◽  
Lauren J. Francey ◽  
David F. Smith ◽  
...  

Skin is the largest organ in the body and serves important barrier, regulatory, and sensory functions. The epidermal layer shows rhythmic physiological responses to daily environmental variation (e.g., DNA repair). We investigated the role of the circadian clock in the transcriptional regulation of epidermis using a hybrid experimental design, in which a limited set of human subjects (n = 20) were sampled throughout the 24-h cycle and a larger population (n = 219) were sampled once. We found a robust circadian oscillator in human epidermis at the population level using pairwise correlations of clock and clock-associated genes in 298 epidermis samples. We then used CYCLOPS to reconstruct the temporal order of all samples, and identified hundreds of rhythmically expressed genes at the population level in human epidermis. We compared these results with published time-series skin data from mice and found a strong concordance in circadian phase across species for both transcripts and pathways. Furthermore, like blood, epidermis is readily accessible and a potential source of biomarkers. Using ZeitZeiger, we identified a biomarker set for human epidermis that is capable of reporting circadian phase to within 3 hours from a single sample. In summary, we show rhythms in human epidermis that persist at the population scale and describe a path to develop robust single-sample circadian biomarkers.


2021 ◽  
Author(s):  
Yuanqing Zhang ◽  
Xiaohui Wang ◽  
Lin Zhu ◽  
Siyi Bai ◽  
Rui Li ◽  
...  

Cortical feedback has long been considered crucial for modulation of sensory processing. In the mammalian auditory system, studies have suggested that corticofugal feedback can have excitatory, inhibitory, or both effects on the response of subcortical neurons, leading to controversies regarding the role of corticothalamic influence. This has been further complicated by studies conducted under different brain states. In the current study, we used cryo-inactivation in the primary auditory cortex (A1) to examine the role of corticothalamic feedback on medial geniculate body (MGB) neurons in awake marmosets. The primary effects of A1 inactivation were a frequency-specific decrease in the auditory response of MGB neurons coupled with an increased spontaneous firing rate, which together resulted in a decrease in the signal-to-noise ratio. In addition, we report for the first-time that A1 robustly modulated the long-lasting sustained response of MGB neurons which changed the frequency tuning after A1 inactivation, e.g., neurons with sharp tuning increased tuning bandwidth whereas those with broad tuning decreased tuning bandwidth. Taken together, our results demonstrate that corticothalamic modulation in awake marmosets serves to enhance sensory processing in a way similar to center-surround models proposed in visual and somatosensory systems, a finding which supports common principles of corticothalamic processing across sensory systems.


2020 ◽  
Author(s):  
Julian Tillmann ◽  
Mirko Uljarevic ◽  
Daisy Crawley ◽  
Guillaume Dumas ◽  
Eva Loth ◽  
...  

Abstract Background Heterogeneity in the phenotypic presentation of Autism Spectrum Disorder (ASD) is apparent in the profile and the severity of sensory symptoms. Here we applied Factor Mixture Modelling (FMM) to test a multidimensional factor model of sensory processing in ASD. We aimed to identify homogeneous sensory subgroups in ASD that differ intrinsically in their severity along continuous factor scores. We also investigated sensory subgroups in relation to clinical variables: sex, age, IQ, social communication symptoms, restricted and repetitive behaviours, adaptive functioning and symptoms of anxiety and Attention-Deficit/Hyperactivity Disorder. Methods 332 children and adults with ASD between the ages of 6 and 30 years with IQs varying between 40 and 148 were included. First, three different confirmatory factor models were fit to the 38 items of the Short Sensory Profile. Then, latent class models (with two-to-five subgroups) were evaluated. The best performing factor model, the 7-factor structure, was subsequently used in two FMMs that varied in the number of subgroups: a two-subgroup, seven-factor model and a three-subgroup, seven-factor model. Results The ‘three-subgroup/seven-factor’ FMM was superior to all other models based on different fit criteria. Identified subgroups differed in sensory severity from severe, moderate to low. Accounting for the potential confounding effects of age and IQ, participants in these sensory subgroups had different levels of social-communicative symptoms, restricted and repetitive behaviours, adaptive functioning skills and symptoms of inattention and anxiety. Limitations Results were derived using a single parent-report measure of sensory symptoms, the SSP, which has some notable construct limitations that constrain the generalisability of findings. Conclusion Sensory features can be best described by three homogeneous sensory subgroups that differ in sensory severity gradients along seven continuous factor scores. Identified sensory subgroups were further differentiated by the severity of core and co-occurring symptoms, and level of adaptive functioning, providing novel evidence on the associated clinical correlates of sensory subgroups. These sensory subgroups provide a platform to further interrogate the neurobiological and genetic correlates of altered sensory processing in ASD.


Sign in / Sign up

Export Citation Format

Share Document