scholarly journals Arp2/3 complex activity is necessary for mouse ESC differentiation, times formative pluripotency, and enables lineage specification

2021 ◽  
Author(s):  
Francesca M Aloisio ◽  
Diane L Barber

Mouse embryonic stem cells (mESCs), a model for differentiation into primed epiblast-like cells (EpiLCs), have revealed transcriptional and epigenetic control of early embryonic development. The control and significance of morphological changes, however, remain less defined. We show marked changes in morphology and actin architectures during differentiation that depend on Arp2/3 complex but not formin activity. Inhibiting Arp2/3 complex activity pharmacologically or genetically does not block exit from naive pluripotency but attenuates increases in EpiLC markers. We find that inhibiting Arp2/3 complex activity delays formative pluripotency and causes globally defective lineage specification as indicated by RNA-sequencing, with significant effects on TBX3-depedendent transcriptional programs. We also identify two previously unreported indicators of mESC differentiation; MRTF and FHL2, which have inverse Arp2/3 complex-dependent nuclear translocation. Our findings on Arp2/3 complex activity in differentiation and the established role of formins in EMT indicate that these two actin nucleators regulate distinct modes of epithelial plasticity.

2020 ◽  
Author(s):  
Nathalia Azevedo ◽  
Elisa Bertesago ◽  
Ismail Ismailoglu ◽  
Michael Kyba ◽  
Michihiro Kobayashi ◽  
...  

AbstractThe in vitro generation from pluripotent stem cells (PSCs) of different blood cell types, in particular those that are not replenished by hematopoietic stem cells (HSCs) like fetal-derived tissue-resident macrophages and innate-like lymphocytes, is of a particular interest. In order to succeed in this endeavor, a thorough understanding of the pathway interplay promoting lineage specification for the different blood cell types is needed. Notch signaling is essential for the HSC generation and their derivatives, but its requirement for tissue-resident immune cells is unknown. Using mouse embryonic stem cells (mESCs) to recapitulate murine embryonic development, we have studied the requirement for Notch signaling during the earliest B-lymphopoiesis and found that Rbpj-deficient mESCs are able to generate B-1 cells. Their Notch-independence was confirmed in ex vivo experiments using Rbpj-deficient embryos. In addition, we found that upregulation of Notch signaling was needed for the emergence of B-2 lymphoid cells. Taken together, these findings indicate that control of Notch signaling dosage is critical for the different B-cell lineage specification and provides pivotal information for their in vitro generation from PSCs for therapeutic applications.


Development ◽  
2021 ◽  
Author(s):  
Nathalia Azevedo Portilho ◽  
Rebecca Scarfò ◽  
Elisa Bertesago ◽  
Ismail Ismailoglu ◽  
Michael Kyba ◽  
...  

B-1 lymphocytes are a small but unique component of the innate immune-like cells. However, their ontogenic origin is still a matter of debate. While it is widely accepted that B-1 cells originate early in fetal life, whether or not they arise from hematopoietic stem cells (HSCs) is still unclear. In order to shed light on the B-1 cell origin, we set out to determine whether their lineage specification is dependent on Notch signaling, which is essential for the HSC generation and therefore, all derivatives lineages. Using mouse embryonic stem cells (mESCs) to recapitulate murine embryonic development, we have studied the requirement for Notch signaling during the earliest B-lymphopoiesis and found that Rbpj-deficient mESCs are able to generate B-1 cells. Their Notch-independence was confirmed in ex vivo experiments using Rbpj-deficient embryos. In addition, we found that upregulation of Notch signaling induced the emergence of B-2 lymphoid cells. Taken together, these findings indicate that control of Notch signaling dosage is critical for different B-cell lineages specification from endothelial cells and provides pivotal information for their in vitro generation from PSCs for therapeutic applications.


Open Biology ◽  
2015 ◽  
Vol 5 (8) ◽  
pp. 150092 ◽  
Author(s):  
Zhen-Ao Zhao ◽  
Yang Yu ◽  
Huai-Xiao Ma ◽  
Xiao-Xiao Wang ◽  
Xukun Lu ◽  
...  

Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β -catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development.


1999 ◽  
Vol 27 (16) ◽  
pp. 3276-3282 ◽  
Author(s):  
P. P. H. Van Sloun ◽  
J. G. Jansen ◽  
G. Weeda ◽  
L. H. F. Mullenders ◽  
A. A. van Zeeland ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 501
Author(s):  
Kateřina Skopalová ◽  
Katarzyna Anna Radaszkiewicz ◽  
Věra Kašpárková ◽  
Jaroslav Stejskal ◽  
Patrycja Bober ◽  
...  

The active role of biomaterials in the regeneration of tissues and their ability to modulate the behavior of stem cells in terms of their differentiation is highly advantageous. Here, polypyrrole, as a representantive of electro-conducting materials, is found to modulate the behavior of embryonic stem cells. Concretely, the aqueous extracts of polypyrrole induce neurogenesis within embryonic bodies formed from embryonic stem cells. This finding ledto an effort to determine the physiological cascade which is responsible for this effect. The polypyrrole modulates signaling pathways of Akt and ERK kinase through their phosphorylation. These effects are related to the presence of low-molecular-weight compounds present in aqueous polypyrrole extracts, determined by mass spectroscopy. The results show that consequences related to the modulation of stem cell differentiation must also be taken into account when polypyrrole is considered as a biomaterial.


2014 ◽  
Vol 237 (2) ◽  
pp. e8
Author(s):  
P. Gyambibi-Barnett ◽  
X. Yin ◽  
Y. Chung ◽  
A. Zampetaki ◽  
M. Mayr

Stem Cells ◽  
2009 ◽  
Vol 27 (9) ◽  
pp. 2092-2102 ◽  
Author(s):  
Eva Szabo ◽  
Tianshu Feng ◽  
Ewa Dziak ◽  
Michal Opas

Sign in / Sign up

Export Citation Format

Share Document