scholarly journals An integrative process-driven model for biomass and yield estimation of hardneck garlic (Allium sativum)

2021 ◽  
Author(s):  
Kyungdahm Yun ◽  
Minji Shin ◽  
Kyung Hwan Moon ◽  
Soo-Hyung Kim

We introduce an integrative process-driven crop model for garlic (Allium sativum). Building on our previous model that simulated key phenological, morphological, and physiological features of a garlic plant, the new garlic model provides comprehensive and integrative estimations of biomass accumulation and yield formation under diverse environmental conditions. This model also showcases an application of Cropbox to develop a comprehensive crop model. Cropbox is a crop modeling framework featuring declarative modeling language and unified simulation interface for building and improving crop models. Using Cropbox, we first evaluated the model performance against three datasets with an emphasis on biomass and yield measured under different environmental conditions and growing seasons. We then applied the model to simulate optimal planting dates under future climate conditions for assessing climate adaptation strategies between two contrasting locations in South Korea: the current growing region (Gosan) and an unfavorable cold winter region (Chuncheon, Gangwon-do). The model simulated the growth and development of a southern-type cultivar (Namdo, Jeju-do) reasonably well. Under RCP (Representative Concentration Pathway) scenarios, an overall delay in optimal planting date from a week to a month and a slight increase in potential yield were expected in Gosan. Expansion of growing region to northern area including Chuncheon was expected due to mild winter temperatures in the future and may allow Namdo cultivar production in more regions. The predicted optimal planting date in the new region was similar to the current growing region that favors early fall planting. Our new integrative garlic model provides mechanistic, process-driven crop responses to environmental cues and can be useful for assessing climate impacts and identifying crop specific climate adaptation strategies for the future.

2013 ◽  
Vol 6 (2) ◽  
pp. 495-515 ◽  
Author(s):  
B. Drewniak ◽  
J. Song ◽  
J. Prell ◽  
V. R. Kotamarthi ◽  
R. Jacob

Abstract. The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above- and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types – maize, soybean, and spring wheat – into the coupled carbon–nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the new model, CLM-Crop, validated against observations from two AmeriFlux sites in the United States, planted with maize and soybean. Seasonal carbon fluxes compared well with field measurements for soybean, but not as well for maize. CLM-Crop yields were comparable with observations in countries such as the United States, Argentina, and China, although the generality of the crop model and its lack of technology and irrigation made direct comparison difficult. CLM-Crop was compared against the standard CLM3.5, which simulates crops as grass. The comparison showed improvement in gross primary productivity in regions where crops are the dominant vegetation cover. Crop yields and productivity were negatively correlated with temperature and positively correlated with precipitation, in agreement with other modeling studies. In case studies with the new crop model looking at impacts of residue management and planting date on crop yield, we found that increased residue returned to the litter pool increased crop yield, while reduced residue returns resulted in yield decreases. Using climate controls to signal planting date caused different responses in different crops. Maize and soybean had opposite reactions: when low temperature threshold resulted in early planting, maize responded with a loss of yield, but soybean yields increased. Our improvements in CLM demonstrate a new capability in the model – simulating agriculture in a realistic way, complete with fertilizer and residue management practices. Results are encouraging, with improved representation of human influences on the land surface and the potentially resulting climate impacts.


2012 ◽  
Vol 5 (4) ◽  
pp. 4137-4185 ◽  
Author(s):  
B. Drewniak ◽  
J. Song ◽  
J. Prell ◽  
V. R. Kotamarthi ◽  
R. Jacob

Abstract. The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above- and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types – maize, soybean, and spring wheat – into the coupled carbon-nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the new model, CLM-Crop, validated against observations from two AmeriFlux sites in the United States, planted with maize and soybean. Seasonal carbon fluxes compared well with field measurements. CLM-Crop yields were comparable with observations in some regions, although the generality of the crop model and its lack of technology and irrigation made direct comparison difficult. CLM-Crop was compared against the standard CLM3.5, which simulates crops as grass. The comparison showed improvement in gross primary productivity in regions where crops are the dominant vegetation cover. Crop yields and productivity were negatively correlated with temperature and positively correlated with precipitation. In case studies with the new crop model looking at impacts of residue management and planting date on crop yield, we found that increased residue returned to the litter pool increased crop yield, while reduced residue returns resulted in yield decreases. Using climate controls to signal planting date caused different responses in different crops. Maize and soybean had opposite reactions: when low temperature threshold resulted in early planting, maize responded with a loss of yield, but soybean yields increased. Our improvements in CLM demonstrate a new capability in the model – simulating agriculture in a realistic way, complete with fertilizer and residue management practices. Results are encouraging, with improved representation of human influences on the land surface and the potentially resulting climate impacts.


Author(s):  
Kenshi Baba ◽  
Masahiro Matsuura ◽  
Taiko Kudo ◽  
Shigeru Watanabe ◽  
Shun Kawakubo ◽  
...  

The latest climate change adaptation strategies adopted by local governments in Japan are discussed. A nationwide survey demonstrates several significant findings. While some prefectures and major cities have already begun to prepare adaptation strategies, most municipalities have yet to consider such strategies. This gap must be considered when studying the climate adaptation strategies of local governments in Japan, as municipal governments are crucial to the implementation of climate adaptation strategies due to high diversity in climate impacts and geographical conditions among municipalities within each prefecture in Japan. Key challenges for local governments in preparing adaptation strategies are the lack of expert knowledge and experience in the field of climate change adaptation, and compartmentalization of government bureaus. To address these issues, an interview study of six model prefectures in the SI-CAT (Social Implementation Program on Climate Change Adaptation Technology) project by the MEXT (Ministry of Education, Culture, Sports, Science and Technology) was conducted in order to understand the details of challenges raised by adaptation among local governments in Japan. The survey results reveal that local government officials lack information regarding impact projections and tools for evaluating policy options, even though some of them recognize some of the impacts of climate change on rice crop, vegetable, and fruit production. In addition, different bureaus, such as agriculture, public health, and disaster prevention, focus on different outcomes of climate change due to their different missions. As this is the inherent nature of bureaucratic organizations, a new approach for encouraging collaboration among them is needed. The fact that most of the local governments in Japan have not yet assessed the local impacts of climate change, an effort that would lay the groundwork for preparing adaptation strategies, suggests the importance of cyclical co-design that facilitates the relationship between climatic technology such as climate models and impact assessment and local governments’ needs so that the technology developments clarify the needs of local government, while those needs in turn nurture the seeds of technology.


Author(s):  
Robert Stojanov ◽  
Sarah Rosengaertner ◽  
Alex de Sherbinin ◽  
Raphael Nawrotzki

AbstractDevelopment cooperation actors have been addressing climate change as a cross-cutting issue and investing in climate adaptation projects since the early 2000s. More recently, as concern has risen about the potential impacts of climate variability and change on human mobility, development cooperation actors have begun to design projects that intentionally address the drivers of migration, including climate impacts on livelihoods. However, to date, we know little about the development cooperation’s role and function in responding to climate related mobility and migration. As such, the main aim of this paper is to outline the policy frameworks and approaches shaping development cooperation actors’ engagement and to identify areas for further exploration and investment. First, we frame the concept of climate mobility and migration and discuss some applicable policy frameworks that govern the issue from various perspectives; secondly, we review the toolbox of approaches that development cooperation actors bring to climate mobility; and third, we discuss the implications of the current Covid-19 pandemic and identify avenues for the way forward. We conclude that ensuring safe and orderly mobility and the decent reception and long-term inclusion of migrants and displaced persons under conditions of more severe climate hazards, and in the context of rising nationalism and xenophobia, poses significant challenges. Integrated approaches across multiple policy sectors and levels of governance are needed. In addition to resources, development cooperation actors can bring data to help empower the most affected communities and regions and leverage their convening power to foster more coordinated approaches within and across countries.


2021 ◽  
Vol 13 (3) ◽  
pp. 1334
Author(s):  
Denis Maragno ◽  
Carlo Federico dall’Omo ◽  
Gianfranco Pozzer ◽  
Francesco Musco

Climate change risk reduction requires cities to undertake urgent decisions. One of the principal obstacles that hinders effective decision making is insufficient spatial knowledge frameworks. Cities climate adaptation planning must become strategic to rethink and transform urban fabrics holistically. Contemporary urban planning should merge future threats with older and unsolved criticalities, like social inequities, urban conflicts and “drosscapes”. Retrofitting planning processes and redefining urban objectives requires the development of innovative spatial information frameworks. This paper proposes a combination of approaches to overcome knowledge production limits and to support climate adaptation planning. The research was undertaken in collaboration with the Metropolitan City of Venice and the Municipality of Venice, and required the production of a multi-risk climate atlas to support their future spatial planning efforts. The developed tool is a Spatial Decision Support System (SDSS), which aids adaptation actions and the coordination of strategies. The model recognises and assesses two climate impacts: Urban Heat Island and Flooding, representing the Metropolitan City of Venice (CMVE) as a case study in complexity. The model is composed from multiple assessment methodologies and maps both vulnerability and risk. The atlas links the morphological and functional conditions of urban fabrics and land use that triggers climate impacts. The atlas takes the exposure assessment of urban assets into account, using this parameter to describe local economies and social services, and map the uneven distribution of impacts. The resulting tool is therefore a replicable and scalable mapping assessment able to mediate between metropolitan and local level planning systems.


2019 ◽  
Vol 12 (4) ◽  
pp. 1-33 ◽  
Author(s):  
Telmo Adão ◽  
Luís Pádua ◽  
David Narciso ◽  
Joaquim João Sousa ◽  
Luís Agrellos ◽  
...  

MixAR, a full-stack system capable of providing visualization of virtual reconstructions seamlessly integrated in the real scene (e.g. upon ruins), with the possibility of being freely explored by visitors, in situ, is presented in this article. In addition to its ability to operate with several tracking approaches to be able to deal with a wide variety of environmental conditions, MixAR system also implements an extended environment feature that provides visitors with an insight on surrounding points-of-interest for visitation during mixed reality experiences (positional rough tracking). A procedural modelling tool mainstreams augmentation models production. Tests carried out with participants to ascertain comfort, satisfaction and presence/immersion based on an in-field MR experience and respective results are also presented. Ease to adapt to the experience, desire to see the system in museums and a raised curiosity and motivation contributed as positive points for evaluation. In what regards to sickness and comfort, the lowest number of complaints seems to be satisfactory. Models' illumination/re-lightning must be addressed in the future to improve the user's engagement with the experiences provided by the MixAR system.


2010 ◽  
Vol 2 (3) ◽  
pp. 237-248 ◽  
Author(s):  
Kyle Andrew Poyar ◽  
Nancy Beller-Simms

Abstract State and local governments in the United States manage a wide array of natural and human resources that are particularly sensitive to climate variability and change. Recent revelations of the extent of the current and potential climate impact in this realm such as with the quality of water, the structure of the coasts, and the potential and witnessed impact on the built infrastructure give these political authorities impetus to minimize their vulnerability and plan for the future. In fact, a growing number of subnational government bodies in the United States have initiated climate adaptation planning efforts; these initiatives emphasize an array of climate impacts, but at different scales, scopes, and levels of sophistication. Meanwhile, the current body of climate adaptation literature has not taken a comprehensive look at these plans nor have they questioned what prompts local adaptation planning, at what scope and scale action is being taken, or what prioritizes certain policy responses over others. This paper presents a case-based analysis of seven urban climate adaptation planning initiatives, drawing from a review of publicly available planning documents and interviews with stakeholders directly involved in the planning process to provide a preliminary understanding of these issues. The paper also offers insight into the state of implementation of adaptation strategies, highlighting the role of low upfront costs and cobenefits with issues already on the local agenda in prompting anticipatory adaptation.


2011 ◽  
Vol 62 (3) ◽  
pp. 223 ◽  
Author(s):  
Allison Aldous ◽  
James Fitzsimons ◽  
Brian Richter ◽  
Leslie Bach

Climate change is expected to have significant impacts on hydrologic regimes and freshwater ecosystems, and yet few basins have adequate numerical models to guide the development of freshwater climate adaptation strategies. Such strategies can build on existing freshwater conservation activities, and incorporate predicted climate change impacts. We illustrate this concept with three case studies. In the Upper Klamath Basin of the western USA, a shift in land management practices would buffer this landscape from a declining snowpack. In the Murray–Darling Basin of south-eastern Australia, identifying the requirements of flood-dependent natural values would better inform the delivery of environmental water in response to reduced runoff and less water. In the Savannah Basin of the south-eastern USA, dam managers are considering technological and engineering upgrades in response to more severe floods and droughts, which would also improve the implementation of recommended environmental flows. Even though the three case studies are in different landscapes, they all contain significant freshwater biodiversity values. These values are threatened by water allocation problems that will be exacerbated by climate change, and yet all provide opportunities for the development of effective climate adaptation strategies.


Sign in / Sign up

Export Citation Format

Share Document