scholarly journals Affinity sedimentation and magnetic separation with plant-made immunosorbent nanoparticles for therapeutic protein purification

2021 ◽  
Author(s):  
Matthew J McNulty ◽  
Anton Schwartz ◽  
Jesse Delzio ◽  
Kalimuthu Karuppanan ◽  
Aaron Jacobson ◽  
...  

The virus-based immunosorbent nanoparticle is a nascent technology being developed to serve as a simple and efficacious agent in biosensing and therapeutic antibody purification. There has been particular emphasis on the use of plant virions as immunosorbent nanoparticle chassis for their diverse morphologies and accessible, high yield manufacturing via crop cultivation. To date, studies in this area have focused on proof-of-concept immunosorbent functionality in biosensing and purification contexts. Here we consolidate a previously reported pro-vector system into a single Agrobacterium tumefaciens vector to investigate and expand the utility of virus-based immunosorbent nanoparticle technology for therapeutic protein purification. We demonstrate the use of this technology for Fc-fusion protein purification, characterize key nanomaterial properties including binding capacity, stability, reusability, and particle integrity, and present an optimized processing scheme with reduced complexity and increased purity. Furthermore, we present a coupling of virus-based immunosorbent nanoparticles with magnetic particles as a strategy to overcome limitations of the immunosorbent nanoparticle sedimentation-based affinity capture methodology. We report magnetic separation results which exceed the binding capacity of current industry standards by an order of magnitude.

2019 ◽  
Vol 2 (2) ◽  
pp. 35 ◽  
Author(s):  
Barbara Schroeder ◽  
Hoa Le Xuan ◽  
Jule L. Völzke ◽  
Michael G. Weller

Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications.


2006 ◽  
Vol 71 (2) ◽  
pp. 135-141 ◽  
Author(s):  
Marija Mojsin ◽  
Jelena Djurovic ◽  
Isidora Petrovic ◽  
Aleksandar Krstic ◽  
Danijela Drakulic ◽  
...  

In this paper, a method for the rapid identification and purification of sequence specific DNA binding proteins based on magnetic separation is presented. This method was applied to confirm the binding of the human recombinant USF1 protein to its putative binding site (E-box) within the human SOX3 protomer. It has been shown that biotinylated DNA attached to streptavidin magnetic particles specifically binds the USF1 protein in the presence of competitor DNA. It has also been demonstrated that the protein could be successfully eluted from the beads, in high yield and with restored DNA binding activity. The advantage of these procedures is that they could be applied for the identification and purification of any high-affinity sequence-specific DNA binding protein with only minor modifications.


Author(s):  
Barbara Schroeder ◽  
Hoa Le Xuan ◽  
Jule L. Völzke ◽  
Michael G. Weller

Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications.


Author(s):  
Yasmin Kaveh-Baghbaderani ◽  
Raphaela Allgayer ◽  
Sebastian Patrick Schwaminger ◽  
Paula Fraga-García ◽  
Sonja Berensmeier

2013 ◽  
Vol 30 (1) ◽  
pp. 108-112 ◽  
Author(s):  
Justin T. McCue ◽  
Keith Selvitelli ◽  
Doug Cecchini ◽  
Rhonda Brown

Membranes ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Eleonora Lalli ◽  
Jouciane S. Silva ◽  
Cristiana Boi ◽  
Giulio C. Sarti

Affinity capture represents an important step in downstream processing of proteins and it is conventionally performed through a chromatographic process. The performance of this step highly depends on the type of matrix employed. In particular, resin beads and convective materials, such as membranes and monoliths, are the commonly available supports. The present work deals with non-competitive binding of bovine serum albumin (BSA) on different chromatographic media functionalized with Cibacron Blue F3GA (CB). The aim is to set up the development of the purification process starting from the lab-scale characterization of a commercially available CB resin, regenerated cellulose membranes and polymeric monoliths, functionalized with CB to identify the best option. The performance of the three different chromatographic media is evaluated in terms of BSA binding capacity and productivity. The experimental investigation shows promising results for regenerated cellulose membranes and monoliths, whose performance are comparable with those of the packed column tested. It was demonstrated that the capacity of convective stationary phases does not depend on flow rate, in the range investigated, and that the productivity that can be achieved with membranes is 10 to 20 times higher depending on the initial BSA concentration value, and with monoliths it is approximately twice that of beads, at the same superficial velocity.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiaomin Zhang ◽  
Jie Sun

Chitosan sulfate was prepared and characterized as a new chromatography media for protein separation. The degree of sulfonation of chitosan could be well controlled and impacted under conditions in the synthesis process. The prepared chitosan sulfate shows improved binding capacity with proteins. Sulfonated chitosan shows improved ion-exchange adsorption properties with proteins, which could have good potential in protein purification.


2011 ◽  
Vol 194 (2) ◽  
pp. 287-296 ◽  
Author(s):  
Richard Gordon ◽  
Colleen E. Hogan ◽  
Matthew L. Neal ◽  
Vellareddy Anantharam ◽  
Anumantha G. Kanthasamy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document