scholarly journals Developmental regulation and functional prediction of microRNAs in an expanded Fasciola hepatica miRNome

2021 ◽  
Author(s):  
Caoimhe M Herron ◽  
Anna O'Connor ◽  
Emily Robb ◽  
Erin McCammick ◽  
Claire Hill ◽  
...  

The liver fluke, Fasciola hepatica, is a global burden on the wellbeing and productivity of farmed ruminants, and a zoonotic threat to human health. Despite the clear need for accelerated discovery of new drug and vaccine treatments for this pathogen, we still have a relatively limited understanding of liver fluke biology and host interactions. Noncoding RNAs, including micro (mi)RNAs, are key to transcriptional regulation in all eukaryotes, such that an understanding of miRNA biology can shed light on organismal function at a systems level. Four previous publications have reported up to 89 mature miRNA sequences from F. hepatica, but our data show that this does not represent a full account of this species miRNome. We have expanded on previous studies by sequencing, for the first time, miRNAs from multiple life stages (adult, newly excysted juvenile (NEJ), metacercariae and adult-derived extracellular vesicles (EVs)). These experiments detected an additional 61 high-confidence miRNAs, most of which have not been described in any other species, expanding the F. hepatica miRNome to 150 mature sequences. We used quantitative (q)PCR assays to provide the first developmental profile of miRNA expression across metacercariae, NEJ, adult and adult-derived Evs. The majority of miRNAs were expressed most highly in metacercariae, with at least six distinct expression clusters apparent across life stages. Intracellular miRNAs were functionally analysed to identify target mRNAs with inversely correlated expression in F. hepatica tissue transcriptomes, highlighting regulatory interactions with key virulence transcripts including cathepsin proteases, and neuromuscular genes that control parasite growth, development and motility. We also linked 28 adult-derived EV miRNAs with downregulation of 397 host genes in F. hepatica-infected transcriptomes from ruminant lymph node, peripheral blood mononuclear cell (PBMC) and liver tissue transcriptomes. These included genes involved in signal transduction, immune and metabolic pathways, adding to the evidence for miRNA-based immunosuppression during fasciolosis. These data expand our understanding of the F. hepatica miRNome, provide the first data on developmental miRNA regulation in this species, and provide a set of testable hypotheses for functional genomics interrogations of liver fluke miRNA biology.

2020 ◽  
Author(s):  
Paul McCusker ◽  
Wasim Hussain ◽  
Paul McVeigh ◽  
Erin McCammick ◽  
Nathan G. Clarke ◽  
...  

AbstractFor over a decade RNA interference (RNAi) has been an important molecular tool for functional genomics studies in parasitic flatworms. Despite this, our understanding of RNAi dynamics in many flatworm parasites, such as the temperate liver fluke (Fasciola hepatica), remains rudimentary. The ability to maintain developing juvenile fluke in vitro provides the opportunity to perform functional studies during development of the key pathogenic life stage. Here, we investigate the RNAi competence of developing juvenile liver fluke. Firstly, all life stages examined possess, and express, core candidate RNAi effectors encouraging the hypothesis that all life stages of F. hepatica are RNAi competent. RNAi effector analyses supported growing evidence that parasitic flatworms have evolved a separate clade of RNAi effectors with unknown function. Secondly, we assessed the impact of growth / development during in vitro culture on RNAi in F. hepatica juveniles and found that during the first week post-excystment liver fluke juveniles exhibit quantitatively lower RNAi mediated transcript knockdown when maintained in growth inducing media. This did not appear to occur in older in vitro juveniles, suggesting that rapidly shifting transcript dynamics over the first week following excystment alters RNAi efficacy after a single 24 hour exposure to double stranded (ds)RNA. Finally, RNAi efficiency was found to be improved through use of a repeated dsRNA exposure methodology that has facilitated silencing of genes in a range of tissues, thereby increasing the utility of RNAi as a functional genomics tool in F. hepatica.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2727
Author(s):  
Tanja Forstmaier ◽  
Gabriela Knubben-Schweizer ◽  
Christina Strube ◽  
Yury Zablotski ◽  
Christoph Wenzel

This study was carried out to determine the prevalence of rumen flukes on German cattle farms via the sedimentation technique, and to identify the rumen fluke species occurring in Germany. Additionally, the prevalence of patent Fasciola hepatica infections was determined. Furthermore, a short questionnaire was answered by the farmers. A prevalence of 5.5% and 9.5% was detected for rumen flukes and liver flukes, respectively. Coinfections occurred on 2.1% of farms. In northern Germany, the rumen fluke prevalence was higher than in southern Germany, while for liver fluke the distribution was reversed. Rumen flukes were mostly identified as Calicophoron daubneyi, but in four cases, sequencing revealed Paramphistomum leydeni for the first time in Germany. Grazing and feeding of fresh grass, as well as organic farming, were significantly associated with rumen and liver fluke occurrence. In contrast, suckler cow husbandry only had an influence on the occurrence of rumen flukes, but not liver flukes. Trematode eggs could be detected in both, farms with and without deworming. Since there were only a few studies about Paramphistomidosis in Germany, more attention should be paid to these parasitic diseases for animal welfare and animal health reasons.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 420
Author(s):  
Gabriel Biffi ◽  
Simone Policena Rosa ◽  
Robin Kundrata

Jurasaidae are a family of neotenic elateroid beetles which was described recently from the Brazilian Atlantic Forest biodiversity hotspot based on three species in two genera. All life stages live in the soil, including the larviform females, and only adult males are able to fly. Here, we report the discovery of two new species, Jurasai miraculum sp. nov. and J. vanini sp. nov., and a new, morphologically remarkable population of J. digitusdei Rosa et al., 2020. Our discovery sheds further light on the diversity and biogeography of the group. Most species of Jurasaidae are known from the rainforest remnants of the Atlantic Forest, but here for the first time we report a jurasaid species from the relatively drier Atlantic Forest/Caatinga transitional zone. Considering our recent findings, minute body size and cryptic lifestyle of all jurasaids, together with potentially high numbers of yet undescribed species of this family from the Atlantic Forest and possibly also other surrounding ecoregions, we call for both field research in potentially suitable localities as well as for a detailed investigation of a massive amount of already collected but still unprocessed materials deposited in a number of Brazilian institutes, laboratories and collections.


2021 ◽  
Vol 120 (3) ◽  
pp. 979-991
Author(s):  
Rebekah B. Stuart ◽  
Suzanne Zwaanswijk ◽  
Neil D. MacKintosh ◽  
Boontarikaan Witikornkul ◽  
Peter M. Brophy ◽  
...  

AbstractFasciola hepatica (liver fluke), a significant threat to food security, causes global economic loss for the livestock industry and is re-emerging as a foodborne disease of humans. In the absence of vaccines, treatment control is by anthelmintics; with only triclabendazole (TCBZ) currently effective against all stages of F. hepatica in livestock and humans. There is widespread resistance to TCBZ and its detoxification by flukes might contribute to the mechanism. However, there is limited phase I capacity in adult parasitic helminths with the phase II detoxification system dominated by the soluble glutathione transferase (GST) superfamily. Previous proteomic studies have demonstrated that the levels of Mu class GST from pooled F. hepatica parasites respond under TCBZ-sulphoxide (TCBZ-SO) challenge during in vitro culture ex-host. We have extended this finding by exploiting a sub-proteomic lead strategy to measure the change in the total soluble GST profile (GST-ome) of individual TCBZ-susceptible F. hepatica on TCBZ-SO-exposure in vitro culture. TCBZ-SO exposure demonstrated differential abundance of FhGST-Mu29 and FhGST-Mu26 following affinity purification using both GSH and S-hexyl GSH affinity. Furthermore, a low or weak affinity matrix interacting Mu class GST (FhGST-Mu5) has been identified and recombinantly expressed and represents a new low-affinity Mu class GST. Low-affinity GST isoforms within the GST-ome was not restricted to FhGST-Mu5 with a second likely low-affinity sigma class GST (FhGST-S2) uncovered. This study represents the most complete Fasciola GST-ome generated to date and has supported the potential of subproteomic analyses on individual adult flukes.


2021 ◽  
Vol 293 ◽  
pp. 109427
Author(s):  
Jane Lamb ◽  
Emma Doyle ◽  
Jamie Barwick ◽  
Michael Chambers ◽  
Lewis Kahn

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 725
Author(s):  
David Becerro-Recio ◽  
Javier González-Miguel ◽  
Alberto Ucero ◽  
Javier Sotillo ◽  
Álvaro Martínez-Moreno ◽  
...  

Excretory/secretory products released by helminth parasites have been widely studied for their diagnostic utility, immunomodulatory properties, as well as for their use as vaccines. Due to their location at the host/parasite interface, the characterization of parasite secretions is important to unravel the molecular interactions governing the relationships between helminth parasites and their hosts. In this study, the excretory/secretory products from adult worms of the trematode Fasciola hepatica (FhES) were employed in a combination of two-dimensional electrophoresis, immunoblot and mass spectrometry, to analyze the immune response elicited in sheep during the course of an experimental infection. Ten different immunogenic proteins from FhES recognized by serum samples from infected sheep at 4, 8, and/or 12 weeks post-infection were identified. Among these, different isoforms of cathepsin L and B, peroxiredoxin, calmodulin, or glutathione S-transferase were recognized from the beginning to the end of the experimental infection, suggesting their potential role as immunomodulatory antigens. Furthermore, four FhES proteins (C2H2-type domain-containing protein, ferritin, superoxide dismutase, and globin-3) were identified for the first time as non-immunogenic proteins. These results may help to further understand host/parasite relationships in fasciolosis, and to identify potential diagnostic molecules and drug target candidates of F. hepatica.


Zootaxa ◽  
2006 ◽  
Vol 1307 (1) ◽  
pp. 55 ◽  
Author(s):  
VALENTINA A. TESLENKO

A new species of Kamimuria, K. lyubaretzi (Plecoptera, Perlidae) from the Russian Far East is described and illustrated for the first time. The description includes all life stages and both sexes. Distributional data are presented.


Nature ◽  
1963 ◽  
Vol 198 (4876) ◽  
pp. 204-204 ◽  
Author(s):  
D. TEODOROVIĆ ◽  
I. BERKEŠ ◽  
M. MILOVANAVIĆ

Parasitology ◽  
1990 ◽  
Vol 101 (3) ◽  
pp. 395-407 ◽  
Author(s):  
A. W. Stitt ◽  
I. Fairweather

SUMMARYSpermatogenesis and the fine structure of the mature spermatozoon of Fasciola hepatica have been studied by transmission electron microscopy. The primary spermatogonia display a typical gonial morphology and occupy the periphery of the testis. They undergo 3 mitotic divisions to give rise to 8 primary spermatocytes forming a rosette of cells connected to a central cytophore. The primary spermatocytes undergo 2 meiotic divisions, resulting in 32 spermatids that develop into spermatozoa. Intranuclear synaptonemal complexes in primary spermatocytes confirm the first meiotic division. The onset of spermiogenesis is marked by the formation of the zone of differentiation which contains 2 basal bodies and a further centriole derivative, the central body. The zone extends away from the spermatid cell to form the median process; into this migrates the differentiated and elongate nucleus. Simultaneously, 2 axonemes develop from the basal bodies. During development, they rotate through 90° to extend parallel to the median process. The migration of the nucleus to the distal end of the median process coincides with the fusion of the axonemes to the latter to form a monopartite spermatozoon. The mature spermatozoon possesses 2 axonemes of the 9 + ‘1’ pattern typical of parasitic platyhelminths, 2 elongate mitochondria and a variable array of peripheral microtubules. The nuclear region of the spermatozoon is immotile. The value of sperm ultrastructure as a taxonomic tool in platyhelminth phylogeny is discussed.


Sign in / Sign up

Export Citation Format

Share Document