scholarly journals Structure-Activity Relationships in the Design of Mitochondria-Targeted Peptide Therapeutics

2021 ◽  
Author(s):  
Wayne Mitchell ◽  
Jeffrey Tamucci ◽  
Emery Ng ◽  
Shaoyi Liu ◽  
Hazel H Szeto ◽  
...  

Mitochondria play a central role in metabolic homeostasis; hence, dysfunction of this organelle underpins the etiology of many heritable and aging-related diseases. Mitochondria-targeted tetrapeptides with alternating cationic and aromatic residues, such as SS-31 (Elamipretide), show promise as therapeutic compounds. In this study, we conducted a quantitative structure-activity analysis of three alternative tetrapeptide analogs that differed with respect to aromatic side chain composition and sequence register, benchmarked against SS-31. Using NMR and molecular dynamics approaches, we obtained the first structural models for this class of compounds, showing that all analogs except for SS-31 form compact reverse turn conformations in the membrane-bound state. All peptide analogs bound cardiolipin-containing membranes, yet they had significant differences in equilibrium binding behavior and membrane interactions. Notably, the analogs had markedly different effects on membrane surface charge, supporting a mechanism in which modulation of membrane electrostatics is a key feature of their mechanism of action. All peptide analogs preserved survival and energy metabolism more effectively than SS-31 in cell stress models. Within our peptide set, the analog containing tryptophan side chains, SPN10, had the strongest impact on most membrane properties and showed greatest efficacy in cell culture studies. Taken together, these results show that side chain composition and register strongly influence the activity of these mitochondria-targeted peptides. Furthermore, this work helps provide a framework for the rational design of next-generation therapeutics with enhanced potency.

1997 ◽  
Vol 41 (8) ◽  
pp. 1649-1657 ◽  
Author(s):  
N J Snyder ◽  
L B Tabas ◽  
D M Berry ◽  
D C Duckworth ◽  
D O Spry ◽  
...  

An intestinal proton-dependent peptide transporter located on the lumenal surface of the enterocyte is responsible for the uptake of many orally absorbed beta-lactam antibiotics. Both cephalexin and loracarbef are transported by this mechanism into the human intestinal Caco-2 cell line. Forty-seven analogs of the carbacephalosporin loracarbef and the cephalosporin cephalexin were prepared to evaluate the structural features necessary for uptake by this transport carrier. Compounds were evaluated for their antibacterial activities and for their ability to inhibit 1 mM cephalexin uptake and, subsequently, uptake into Caco-2 cells. Three clinically evaluated orally absorbed carbacephems were taken up by Caco-2 cells, consistent with their excellent bioavailability in humans. Although the carrier preferred the L stereoisomer, these compounds lacked antibacterial activity and were hydrolyzed intracellularly in Caco-2 cells. Compounds modified at the 3 position of cephalexin and loracarbef with a cyclopropyl or a trifluoromethyl group inhibited cephalexin uptake. Analogs with lipophilic groups on the primary amine of the side chain inhibited cephalexin uptake, retained activity against gram-positive bacteria but lost activity against gram-negative bacteria. Substitution of the phenylglycl side chain with phenylacetyl side chains gave similar results. Compounds which lacked an aromatic ring in the side chain inhibited cephalexin uptake but lost all antibacterial activity. Thus, the phenylglycl side chain is not absolutely required for uptake. Different structural features are required for antibacterial activity and for being a substrate of the transporter. Competition studies with cephalexin indicate that human intestinal Caco-2 cells may be a useful model system for initially guiding structure-activity relationships for the rational design of new oral agents.


2010 ◽  
Vol 5 (9) ◽  
pp. 1934578X1000500
Author(s):  
Iris Stappen ◽  
Joris Höfinghoff ◽  
Gerhard Buchbauer ◽  
Peter Wolschann

Structural modifications of natural (-)-( Z)-β-santalol have shown that the sandalwood odor impression is highly sensitive, even to small structural changes. Particularly, the substitution of the quaternary carbon is of great influence on the scent. Epi-compounds with side chains in the endo-position possess sandalwood odor in only a few derivatives, whereas modifications at this side chain, as well as modification at the bicyclic ring systems mostly lead to a complete loss of sandalwood fragrance.


2017 ◽  
Vol 134 ◽  
pp. 86-96 ◽  
Author(s):  
Anna Y. Belorusova ◽  
Andrea Martínez ◽  
Zoila Gándara ◽  
Generosa Gómez ◽  
Yagamare Fall ◽  
...  

2016 ◽  
Vol 94 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Huiqun Wang ◽  
Wei Cui ◽  
Chenchen Guo ◽  
Bo-Zhen Chen ◽  
Mingjuan Ji

NS5B polymerase plays an important role in viral replication machinery. TMC647055 (TMC) is a novel and potent non-nucleoside inhibitor of the HCV NS5B polymerase. However, mutations that result in drug resistance to TMC have been reported. In this study, we used molecular dynamics (MD) simulations, binding free energy calculations, and free energy decomposition to investigate the drug resistance mechanism of HCV to TMC resulting from L392I, P495T, P495S, and P495L mutations in NS5B polymerase. From the calculated results we determined that the decrease in the binding affinity between TMC and NS5BL392I polymerase is mainly caused by the extra methyl group at the CB atom of Ile. The polarity of the side-chain of residue 495 has no distinct influence on residue 495 binding with TMC, whereas the smaller size of the side-chain of residue 495 causes a substantial decrease in the van der Walls interaction between TMC and residue 495. Moreover, the longer length of the side-chain of residue 495 has a significant effect on the electrostatic interaction between TMC and Arg-503. Finally, we performed the same calculations and detailed analysis on other 3 mutations (L392V, P495V, and P495I). The results further confirmed our conclusions. The computational results not only reveal the drug resistance mechanism between TMC647055 and NS5B polymerase, but also provide valuable information for the rational design of more potent non-nucleoside inhibitors targeting HCV NS5B polymerase.


1980 ◽  
Vol 1 (7) ◽  
pp. 197-201
Author(s):  
Michael J. Kraemer ◽  
Arnold L. Smith

Ampicillin, first introduced in 1961, has probably become the most widely used penicillin in clinical pediatrics. STRUCTURE ACTIVITY RELATIONSHIPS All penicillins contain the 6-amino penicillanic acid moiety (Fig 1). Its structure includes a thiazolidine ring (A), a β-lactam ring (B), the source of antibacterial activity, and an acyl side chain (R), containing a variety of substitutions creating the family of semisynthetic penicillins. The only difference between ampicillin and penicillin G is the presence of an amino group in the acyl side chain (Fig 1). PHARMACOLOGY AND BACTERIOLOGY Ampicillin is a semisynthetic penicillin, active against Streptococus pneumoniae and certain Gram-negative bacteria, including most Haemophilus influenzae, Escherichia coli, and certain Proteus species. Compared to penicillin G, it has increased stability in acid solutions: a property facilitating oral administration and absorption. It penetrates into most body tissues; effective entry into CSF, however, occurs only with inflamed meninges. The serum half-life with normal renal function varies from four hours in newborns1 to 1.3 hours in adults.2 Ampicillin can cause an allergic, or nonallergic skin rash (Fig 2). ALLERGY Allergy (for the purposes of this discussion) is defined as a specific immunologic interaction, between either antigen and antibody, or antigen with a sensitized lymphocyte, resulting in a clinically deleterious effect. Implicit is a prior contact with the antigen.


2021 ◽  
Vol 18 ◽  
Author(s):  
Monika Kakadiya ◽  
Yunus Pasha ◽  
Malleshappa Noolvi ◽  
Ashish Patel

: Tuberculosis remains a highly infectious disease across the world. In the identification of new antitubercular agents, coumarin clubbed thiadiazole amides have been synthesized and evaluated for in vitro antitubercular activity. Due to the growing concern about chemicals and their impact on the environment, greener and faster reaction conditions needed to be incorporated. Therefore, we used TBTU as a coupling reagent for efficient and facile synthesis of substituted-N-(5-((7-methyl-2-oxo-2H-chromes-4-yl)-methyl)-1,3, 4 - thiadiazol-2-yl)-benzamide 4a-j with good yields up to 95% in mild reaction condition. All the synthesized compounds were evaluated in vitro for antitubercular activity against the H37Rv strain of M.Tuberculosis. Compounds 4c, 4f, and 4j were found active at 25 µg/mL against M. tb H37Rv. Electron withdrawing substituents present on aromatic side-chain showed promising anti-tubercular activity.


1989 ◽  
Vol 44 (7-8) ◽  
pp. 609-616 ◽  
Author(s):  
Kun Hoe Chung ◽  
Kwang Yun Cho ◽  
Yasuko Asami ◽  
Nobutaka Takahashi ◽  
Shigeo Yoshida

Many derivatives of 2,3-dim ethoxy-4-hydroxypyridine, which were designed from examination of the structure-activity relationship of piericidins, were tested for inhibition of NADH-UQ reductase. The lipophilic side chain of those compounds was indicated to be a key part for activity and its optimal length was conjectured. By the use of two different phases of assay material, intact mitochondria and submitochondria, the size of a membrane effect was shown to depend on the structure of the side chain. 4-Hydroxyquinoline derivatives were also tested for an analogous role in relation to the electron transport function of menaquinone, and they were proven to be inhibitors of NADH-UQ reductase as good as the pyridine derivatives.


Sign in / Sign up

Export Citation Format

Share Document