scholarly journals A human kinase yeast array for the identification of kinases modulating phosphorylation-dependent protein-protein interactions

2021 ◽  
Author(s):  
Stefanie Jehle ◽  
Natalia Kunowska ◽  
Nouhad Benlasfer ◽  
Jonathan Woodsmith ◽  
Gert Weber ◽  
...  

Protein kinases play an important role in cellular signaling pathways and their dysregulation leads to multiple diseases, making kinases prime drug targets. While more than 500 human protein kinases are known to collectively mediate phosphorylation of over 290,000 S/T/Y sites, the activities have been characterized only for a minor, intensively studied subset. To systematically address this discrepancy, we developed a human kinase array in Saccharomyces cerevisiae as a simple readout tool to systematically assess kinase activities. For this array, we expressed 266 human kinases in four different Saccharomyces cerevisiae strains and profiled ectopic growth as a proxy for kinase activity across 33 conditions. More than half of the kinases showed an activity-dependent phenotype across many conditions and in more than one strain. We then employed the kinase array to identify the kinase(s) that can modulate protein-protein-interactions (PPIs). Two characterized, phosphorylation-dependent PPIs with unknown kinase substrate relationships were analyzed in a phospho yeast two-hybrid assay. CK2α1 and SGK2 kinases can abrogate the interaction between the spliceosomal proteins AAR2 and PRPF8 and NEK6 kinase was found to mediate the estrogen receptor (ERα) interaction with 14 3 3 proteins. The human kinase yeast array can thus be used for a variety of kinase activity dependent readouts.

2019 ◽  
Vol 116 (49) ◽  
pp. 24517-24526 ◽  
Author(s):  
Junqiang Ye ◽  
Jonah Cheung ◽  
Valeria Gerbino ◽  
Göran Ahlsén ◽  
Christina Zimanyi ◽  
...  

Exonic DNA sequence variants in the Tbk1 gene associate with both sporadic and familial amyotrophic lateral sclerosis (ALS). Here, we examine functional defects in 25 missense TBK1 mutations, focusing on kinase activity and protein–protein interactions. We identified kinase domain (KD) mutations that abolish kinase activity or display substrate-specific defects in specific pathways, such as innate immunity and autophagy. By contrast, mutations in the scaffold dimerization domain (SDD) of TBK1 can cause the loss of kinase activity due to structural disruption, despite an intact KD. Familial ALS mutations in ubiquitin-like domain (ULD) or SDD display defects in dimerization; however, a subset retains kinase activity. These observations indicate that TBK1 dimerization is not required for kinase activation. Rather, dimerization seems to increase protein stability and enables efficient kinase–substrate interactions. Our study revealed many aspects of TBK1 activities affected by ALS mutations, highlighting the complexity of disease pathogenicity and providing insights into TBK1 activation mechanism.


1991 ◽  
Vol 11 (10) ◽  
pp. 5101-5112
Author(s):  
J S Flick ◽  
M Johnston

Growth of the yeast Saccharomyces cerevisiae on glucose leads to repression of transcription of many genes required for alternative carbohydrate metabolism. The GRR1 gene appears to be of central importance to the glucose repression mechanism, because mutations in GRR1 result in a pleiotropic loss of glucose repression (R. Bailey and A. Woodword, Mol. Gen. Genet. 193:507-512, 1984). We have isolated the GRR1 gene and determined that null mutants are viable and display a number of growth defects in addition to the loss of glucose repression. Surprisingly, grr1 mutations convert SUC2, normally a glucose-repressed gene, into a glucose-induced gene. GRR1 encodes a protein of 1,151 amino acids that is expressed constitutively at low levels in yeast cells. GRR1 protein contains 12 tandem repeats of a sequence similar to leucine-rich motifs found in other proteins that may mediate protein-protein interactions. Indeed, cell fractionation studies are consistent with this view, suggesting that GRR1 protein is tightly associated with a particulate protein fraction in yeast extracts. The combined genetic and molecular data are consistent with the idea that GRR1 protein is a primary response element in the glucose repression pathway and is required for the generation or interpretation of the signal that induces glucose repression.


Author(s):  
Alexander Goncearenco ◽  
Minghui Li ◽  
Franco L. Simonetti ◽  
Benjamin A. Shoemaker ◽  
Anna R. Panchenko

2004 ◽  
Vol 238 (2) ◽  
pp. 119-130 ◽  
Author(s):  
John M. Peltier ◽  
Srdjan Askovic ◽  
Robert R. Becklin ◽  
Cindy Lou Chepanoske ◽  
Yew-Seng J. Ho ◽  
...  

Author(s):  
Sailu Sarvagalla ◽  
Mohane Selvaraj Coumar

Most of the developed kinase inhibitor drugs are ATP competitive and suffer from drawbacks such as off-target kinase activity, development of resistance due to mutation in the ATP binding pocket and unfavorable intellectual property situations. Besides the ATP binding pocket, protein kinases have binding sites that are involved in Protein-Protein Interactions (PPIs); these PPIs directly or indirectly regulate the protein kinase activity. Of recent, small molecule inhibitors of PPIs are emerging as an alternative to ATP competitive agents. Rational design of inhibitors for kinase PPIs could be carried out using molecular modeling techniques. In silico tools available for the prediction of hot spot residues and cavities at the PPI sites and the means to utilize this information for the identification of inhibitors are discussed. Moreover, in silico studies to target the Aurora B-INCENP PPI sites are discussed in context. Overall, this chapter provides detailed in silico strategies that are available to the researchers for carrying out structure-based drug design of PPI inhibitors.


2019 ◽  
Vol 20 (9) ◽  
pp. 2133 ◽  
Author(s):  
Antonella Locascio ◽  
Nuria Andrés-Colás ◽  
José Miguel Mulet ◽  
Lynne Yenush

Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker’s yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein–protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 362
Author(s):  
Nicholas Bragagnolo ◽  
Christina Rodriguez ◽  
Naveed Samari-Kermani ◽  
Alice Fours ◽  
Mahboubeh Korouzhdehi ◽  
...  

Efficient in silico development of novel antibiotics requires high-resolution, dynamic models of drug targets. As conjugation is considered the prominent contributor to the spread of antibiotic resistance genes, targeted drug design to disrupt vital components of conjugative systems has been proposed to lessen the proliferation of bacterial antibiotic resistance. Advancements in structural imaging techniques of large macromolecular complexes has accelerated the discovery of novel protein-protein interactions in bacterial type IV secretion systems (T4SS). The known structural information regarding the F-like T4SS components and complexes has been summarized in the following review, revealing a complex network of protein-protein interactions involving domains with varying degrees of disorder. Structural predictions were performed to provide insight on the dynamicity of proteins within the F plasmid conjugative system that lack structural information.


Sign in / Sign up

Export Citation Format

Share Document