scholarly journals Re-introduction of endogenous pathways for propionyl-CoA, 1-propanol and propionate formation in Escherichia coli

2021 ◽  
Author(s):  
Thai Le

In a previous study, we found that 2-ketobutyrate (2-KB) was seriously degraded in Escherichia coli. In the present investigation, we tried to clarify the products of that degradation process, and intriguingly reconfirmed that 2-KB is chopped up to form propionyl-CoA, 1-propanol and propionate. This short commentary re-introduces efficient endogenous pathways for production of value-added odd-chain compounds such as propionyl-CoA-derived chemicals.

2008 ◽  
Vol 75 (3) ◽  
pp. 589-595 ◽  
Author(s):  
Tae Seok Moon ◽  
Sang-Hwal Yoon ◽  
Amanda M. Lanza ◽  
Joseph D. Roy-Mayhew ◽  
Kristala L. Jones Prather

ABSTRACT A synthetic pathway has been constructed for the production of glucuronic and glucaric acids from glucose in Escherichia coli. Coexpression of the genes encoding myo-inositol-1-phosphate synthase (Ino1) from Saccharomyces cerevisiae and myo-inositol oxygenase (MIOX) from mice led to production of glucuronic acid through the intermediate myo-inositol. Glucuronic acid concentrations up to 0.3 g/liter were measured in the culture broth. The activity of MIOX was rate limiting, resulting in the accumulation of both myo-inositol and glucuronic acid as final products, in approximately equal concentrations. Inclusion of a third enzyme, uronate dehydrogenase (Udh) from Pseudomonas syringae, facilitated the conversion of glucuronic acid to glucaric acid. The activity of this recombinant enzyme was more than 2 orders of magnitude higher than that of Ino1 and MIOX and increased overall flux through the pathway such that glucaric acid concentrations in excess of 1 g/liter were observed. This represents a novel microbial system for the biological production of glucaric acid, a “top value-added chemical” from biomass.


2013 ◽  
Vol 79 (9) ◽  
pp. 3101-3115 ◽  
Author(s):  
G. Ianiri ◽  
A. Idnurm ◽  
S. A. I. Wright ◽  
R. Durán-Patrón ◽  
L. Mannina ◽  
...  

ABSTRACTPatulin is a mycotoxin that contaminates pome fruits and derived products worldwide. Basidiomycete yeasts belonging to the subphylumPucciniomycotinahave been identified to have the ability to degrade this molecule efficiently and have been explored through different approaches to understand this degradation process. In this study,Sporobolomycessp. strain IAM 13481 was found to be able to degrade patulin to form two different breakdown products, desoxypatulinic acid and (Z)-ascladiol. To gain insight into the genetic basis of tolerance and degradation of patulin, more than 3,000 transfer DNA (T-DNA) insertional mutants were generated in strain IAM 13481 and screened for the inability to degrade patulin using a bioassay based on the sensitivity ofEscherichia colito patulin. Thirteen mutants showing reduced growth in the presence of patulin were isolated and further characterized. Genes disrupted in patulin-sensitive mutants included homologs ofSaccharomyces cerevisiae YCK2,PAC2,DAL5, andVPS8. The patulin-sensitive mutants also exhibited hypersensitivity to reactive oxygen species as well as genotoxic and cell wall-destabilizing agents, suggesting that the inactivated genes are essential for tolerating and overcoming the initial toxicity of patulin. These results support a model whereby patulin degradation occurs through a multistep process that includes an initial tolerance to patulin that utilizes processes common to other external stresses, followed by two separate pathways for degradation.


2020 ◽  
Author(s):  
Ran You ◽  
Lei Wang ◽  
Congrong Shi ◽  
Hao Chen ◽  
Shasha Zhang ◽  
...  

Abstract Background: The biosynthesis of high value-added compounds using metabolically engineered strains has received wide attention in recent years. Myo-inositol (inositol), an important compound in the pharmaceutics, cosmetics and food industries, is usually produced from phytate via a harsh set of chemical reactions. Recombinant Escherichia coli strains have been constructed by metabolic engineering strategies to produce inositol, but with a low yield. The proper distribution of carbon flux between cell growth and inositol production is a major challenge for constructing an efficient inositol-synthesis pathway in bacteria. Construction of metabolically engineered E. coli strains with high stoichiometric yield of inositol is desirable.Results: In the present study, we designed an inositol-synthesis pathway from glucose with a theoretical stoichiometric yield of 1 mol inositol/mol glucose. Recombinant E. coli strains with high stoichiometric yield (>0.7 mol inositol/mol glucose) were obtained. Inositol was successfully biosynthesized after introducing two crucial enzymes: inositol-3-phosphate synthase (IPS) from Trypanosoma brucei, and inositol monophosphatase (IMP) from E. coli. Based on starting strains E. coli BW25113 (wild-type) and SG104 (ΔptsG::glk, ΔgalR::zglf, ΔpoxB::acs), a series of engineered strains for inositol production was constructed by deleting the key genes pgi, pfkA and pykF. Plasmid-based expression systems for IPS and IMP were optimized, and expression of the gene zwf was regulated to enhance the stoichiometric yield of inositol. The highest stoichiometric yield (0.96 mol inositol/mol glucose) was achieved from recombinant strain R15 (SG104, Δpgi, Δpgm, and RBSL5-zwf). Strain R04 (SG104 and Δpgi) reached high-density in a 1-L fermenter when using glucose and glycerol as a mixed carbon source. In scaled-up fed-batch bioconversion in situ using strain R04, 0.82 mol inositol/mol glucose was produced within 23 h, corresponding to a titer of 106.3 g/L (590.5 mM) inositol.Conclusions: The biosynthesis of inositol from glucose in recombinant E. coli was optimized by metabolic engineering strategies. The metabolically engineered E. coli strains represent a promising method for future inositol production. This study provides an essential reference to obtain a suitable distribution of carbon flux between glycolysis and inositol synthesis.


2020 ◽  
Vol 48 (W1) ◽  
pp. W477-W487 ◽  
Author(s):  
Shaozhen Ding ◽  
Yu Tian ◽  
Pengli Cai ◽  
Dachuan Zhang ◽  
Xingxiang Cheng ◽  
...  

Abstract To increase the number of value-added chemicals that can be produced by metabolic engineering and synthetic biology, constructing metabolic space with novel reactions/pathways is crucial. However, with the large number of reactions that existed in the metabolic space and complicated metabolisms within hosts, identifying novel pathways linking two molecules or heterologous pathways when engineering a host to produce a target molecule is an arduous task. Hence, we built a user-friendly web server, novoPathFinder, which has several features: (i) enumerate novel pathways between two specified molecules without considering hosts; (ii) construct heterologous pathways with known or putative reactions for producing target molecule within Escherichia coli or yeast without giving precursor; (iii) estimate novel pathways with considering several categories, including enzyme promiscuity, Synthetic Complex Score (SCScore) and LD50 of intermediates, overall stoichiometric conversions, pathway length, theoretical yields and thermodynamic feasibility. According to the results, novoPathFinder is more capable to recover experimentally validated pathways when comparing other rule-based web server tools. Besides, more efficient pathways with novel reactions could also be retrieved for further experimental exploration. novoPathFinder is available at http://design.rxnfinder.org/novopathfinder/.


Author(s):  
R.M.S. Madhubhashini ◽  
U.L.P. Mangalika ◽  
W.A.D Nayananjalie ◽  
W.A.P.P. Weeragalle ◽  
M.V.I. Kumari

The study was conducted to develop a value added set yoghurt, flavoured with acceptable combination of milk and ripened sapodilla fruit pulp. Sensory data showed that, the sample incorporated with 5% sapodilla pulp had the best qualities. Significantly lower (P less than 0.05) pH (4.0 – 4.2) was observed in sapodilla added samples compared to the control (4.7). Further, significantly higher (P less than 0.05) protein contents (5.58 - 5.73%) and total solids (29.34 - 29.64%) were observed in control and 5% sapodilla added yoghurts compared to 15% sapodilla added yoghurts. Escherichia coli was not detected and yeast and mould counts were accordance with the Sri Lanka Standards (824:1989) for a period of 15 days at refrigerated storage. In conclusion, yoghurt incorporated with 5% (w/w) sapodilla pulp has better organoleptic properties and nutritional value and can be stored under refrigerated conditions for 15 days without any quality deterioration while producing at lower cost.


2020 ◽  
Author(s):  
Yudai Higuchi ◽  
Daisuke Sato ◽  
Naofumi Kamimura ◽  
Eiji Masai

ABSTRACTSphingobium sp. strain SYK-6 is an alphaproteobacterial degrader of lignin-derived aromatic compounds, which can degrade all the stereoisomers of β-aryl ether-type compounds. SYK-6 cells convert four stereoisomers of guaiacylglycerol-β-guaiacyl ether (GGE) into two enantiomers of α-(2-methoxyphenoxy)-β-hydroxypropiovanillone (MPHPV) through GGE α-carbon atom oxidation by stereoselective Cα-dehydrogenases encoded by ligD, ligL, and ligN. The ether linkages of the resulting MPHPV enantiomers are cleaved by stereoselective glutathione S-transferases (GSTs) encoded by ligF, ligE, and ligP, generating (βRβS)-α-glutathionyl-β-hydroxypropiovanillone (GS-HPV) and guaiacol. To date, it has been shown that the gene products of ligG and SLG_04120 (ligQ), both encoding GST, catalyze glutathione removal from (βRβS)-GS-HPV, forming achiral β-hydroxypropiovanillone. In this study, we characterized the enzyme properties of LigG and LigQ and elucidated their roles in β-aryl ether catabolism. Purified LigG showed an approximately 300-fold higher specific activity for (βR)-GS-HPV than that for (βS)-GS-HPV, whereas purified LigQ showed an approximately six-fold higher specific activity for (βS)-GS-HPV than that for (βR)-GS-HPV. Analyses of mutants of ligG, ligQ, and both genes revealed that SYK-6 converted (βR)-GS-HPV using both LigG and LigQ, whereas only LigQ was involved in converting (βS)-GS-HPV. Furthermore, the disruption of both ligG and ligQ was observed to lead to the loss of the capability of SYK-6 to convert MPHPV. This suggests that GSH removal from GS-HPV catalyzed by LigG and LigQ, is essential for cellular GSH recycling during β-aryl ether catabolism.IMPORTANCEThe β-aryl ether linkage is most abundant in lignin, comprising 45%–62% of all intermonomer linkages in lignin; thus, cleavage of the β-aryl ether linkage together with the subsequent degradation process is considered the essential step in lignin biodegradation. The enzyme genes for β-aryl ether cleavage are useful for decomposing high-molecular-weight lignin, converting lignin-derived aromatic compounds into value-added products, and modifying lignin structures in plants to reduce lignin recalcitrance. In this study, we uncovered the roles of the two glutathione S-transferase genes, ligG and ligQ, in the conversion of GS-HPV isomers, which are generated in the β-aryl ether cleavage pathway in SYK-6. Adding our current results to previous findings allowed us to have a whole picture of the β-aryl ether cleavage system in SYK-6.


2020 ◽  
Author(s):  
Jingge Wang ◽  
Chaoyong Huang ◽  
Kai Guo ◽  
Lianjie Ma ◽  
Xiangyu Meng ◽  
...  

AbstractEscherichia coli strain K-12 MG1655 has been proposed as an appropriate host strain for industrial production. However, the direct application of this strain suffers from the transformation inefficiency and plasmid instability. Herein, we conducted genetic modifications at a serial of loci of MG1655 genome, generating a robust and universal host strain JW128 with higher transformation efficiency and plasmid stability that can be used to efficiently produce desired chemicals after introducing the corresponding synthetic pathways. Using JW128 as the host, the titer of isobutanol reached 5.76 g/L in shake-flask fermentation, and the titer of lycopene reached 1.91 g/L in test-tube fermentation, 40-fold and 5-fold higher than that of original MG1655, respectively. These results demonstrated JW128 is a promising chassis for high-level production of value-added chemicals.


2020 ◽  
Author(s):  
Alexandre Oliveira ◽  
Joana Rodrigues ◽  
Eugénio Ferreira ◽  
Lígia Rodrigues ◽  
Oscar Dias

AbstractAcrylic acid is a value-added chemical used in industry to produce diapers, coatings, paints, and adhesives, among many others. Due to its economic importance, there is currently a need for new and sustainable ways to synthesise it. Recently, the focus has been laid in the use of Escherichia coli to express the full bio-based pathway using 3-hydroxypropionate as an intermediary through three distinct pathways (glycerol, malonyl-CoA, and β-alanine). Hence, the goals of this work were to use COPASI software to assess which of the three pathways has a higher potential for industrial-scale production, from either glucose or glycerol, and identify potential targets to improve the biosynthetic pathways yields.When compared to the available literature, the models developed during this work successfully predict the production of 3-hydroxypropionate, using glycerol as carbon source in the glycerol pathway, and using glucose as a carbon source in the malonyl-CoA and β-alanine pathways. Finally, this work allowed to identify four potential over-expression targets (glycerol-3-phosphate dehydrogenase (G3pD), acetyl-CoA carboxylase (AccC), aspartate aminotransferase (AspAT), and aspartate carboxylase (AspC)) that should, theoretically, result in higher AA yields.Author summaryAcrylic acid is an economically important chemical compound due to its high market value. Nevertheless, the majority of acrylic acid consumed worldwide its produced from petroleum derivatives by a purely chemical process, which is not only expensive, but it also contributes towards environment deterioration. Hence, justifying the current need for sustainable novel production methods that allow higher profit margins. Ideally, to minimise production cust, the pathway should consist in the direct bio-based production from microbial feedstocks, such as Escherichia coli, but the current yields achieved are still to low to compete with conventional method. In this work, even though the glycerol pathway presented higher yields, we identified the malonyl-CoA route, when using glucose as carbon source, as having the most potential for industrial-scale production, since it is cheaper to implement. Furthermore, we also identified potential optimisation targets for all the tested pathways, that can help the bio-based method to compete with the conventional process.


2021 ◽  
Vol 95 ◽  
pp. 103674
Author(s):  
J.M. Choi ◽  
E. Camfield ◽  
A. Bowman ◽  
K. Rajan ◽  
N. Labbé ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Man Li ◽  
Zhi-Hua Liu ◽  
Naijia Hao ◽  
Michelle L. Olson ◽  
Qiang Li ◽  
...  

The sustainability and economic feasibility of modern biorefinery depend on the efficient processing of both carbohydrate and lignin fractions for value-added products. By mimicking the biomass degradation process in white-rote fungi, a tailored two-step fractionation process was developed to maximize the sugar release from switchgrass biomass and to optimize the lignin processability for bioconversion. Biomimicking biomass processing using Formic Acid: Fenton: Organosolv (F2O) and achieved high processability for both carbohydrate and lignin. Specifically, switchgrass pretreated by the F2O process had 99.6% of the theoretical yield for glucose release. The fractionated lignin was also readily processable by fermentation via Rhodococcus opacus PD630 with a lipid yield of 1.16 g/L. Scanning electron microscope analysis confirmed the fragmentation of switchgrass fiber and the cell wall deconstruction by the F2O process. 2D-HSQC NMR further revealed the cleavage of aryl ether linkages (β-O-4) in lignin components. These results revealed the mechanisms for efficient sugar release and lignin bioconversion. The F2O process demonstrated effective mimicking of natural biomass utilization system and paved a new path for improving the lignin and carbohydrate processability in next generation lignocellulosic biorefinery.


Sign in / Sign up

Export Citation Format

Share Document