scholarly journals Mechanically induced nuclear shuttling of β-catenin requires co-transfer of actin

2021 ◽  
Author(s):  
Buer Sen ◽  
Zhihui Xie ◽  
Sean Howard ◽  
Maya Styner ◽  
Andre j van Wijnen ◽  
...  

Mesenchymal stem cells (MSC) respond to environmental forces with both cytoskeletal re-structuring and activation of protein chaperones of mechanical information, β-catenin and Yes-Associated Protein 1 (YAP1). To function, MSCs must differentiate between dynamic forces such as cyclic strains of extracellular matrix due to physical activity and static strains due to ECM stiffening. To delineate how MSCs recognize and respond differently to both force types, we compared effects of dynamic (200 cycles x 2%) and static (1 x 2% hold) strain on nuclear translocation of β-catenin and YAP1 at 3h after force application. Dynamic strain induced nuclear accumulation of β-catenin, and increased cytoskeletal actin structure and cell stiffness, but had no effect on nuclear YAP1 levels. Critically, both nuclear actin and nuclear stiffness increased along with dynamic strain-induced β-catenin transport. Augmentation of cytoskeletal structure using either static strain or lysophosphatidic acid (LPA) did not increase nuclear content of β-catenin or actin, but induced robust nuclear increase in YAP1. As actin binds β-catenin, we considered whether β-catenin, which lacks a nuclear localization signal, was dependent on actin to gain entry to the nucleus. Knockdown of cofilin-1 (Cfl1) or importin-9 (Ipo9), which co-mediate nuclear transfer of G-actin, prevented dynamic strain-mediated nuclear transfer of both β-catenin and actin. In sum, dynamic strain induction of actin re-structuring promotes nuclear transport of G-actin, concurrently supporting nuclear access of β-catenin via mechanisms utilized for actin transport. Thus, dynamic and static strain activate alternative mechanoresponses reflected by differences in the cellular distributions of actin, β-catenin and YAP1.

1988 ◽  
Vol 8 (10) ◽  
pp. 4048-4054 ◽  
Author(s):  
C V Dang ◽  
W M Lee

We identified and characterized two regions of the human c-myc protein that target proteins into the nucleus. Using mutant c-myc proteins and proteins that fuse portions of c-myc to chicken muscle pyruvate kinase, we found that residues 320 to 328 (PAAKRVKLD; peptide M1) induced complete nuclear localization, and their removal from c-myc resulted in mutant proteins that distributed in both the nucleus and cytoplasm but retained rat embryo cell cotransforming activity. Residues 364 to 374 (RQRRNELKRSP; peptide M2) induced only partial nuclear targeting, and their removal from c-myc resulted in mutant proteins that remained nuclear but were cotransformationally inactive. We conjugated synthetic peptides containing M1 or M2 to human serum albumin and microinjected the conjugate into the cytoplasm of Vero cells. The peptide containing M1 caused rapid and complete nuclear accumulation, whereas that containing M2 caused slower and only partial nuclear localization. Thus, M1 functions as the nuclear localization signal of c-myc, and M2 serves some other and essential function.


1988 ◽  
Vol 8 (10) ◽  
pp. 4048-4054
Author(s):  
C V Dang ◽  
W M Lee

We identified and characterized two regions of the human c-myc protein that target proteins into the nucleus. Using mutant c-myc proteins and proteins that fuse portions of c-myc to chicken muscle pyruvate kinase, we found that residues 320 to 328 (PAAKRVKLD; peptide M1) induced complete nuclear localization, and their removal from c-myc resulted in mutant proteins that distributed in both the nucleus and cytoplasm but retained rat embryo cell cotransforming activity. Residues 364 to 374 (RQRRNELKRSP; peptide M2) induced only partial nuclear targeting, and their removal from c-myc resulted in mutant proteins that remained nuclear but were cotransformationally inactive. We conjugated synthetic peptides containing M1 or M2 to human serum albumin and microinjected the conjugate into the cytoplasm of Vero cells. The peptide containing M1 caused rapid and complete nuclear accumulation, whereas that containing M2 caused slower and only partial nuclear localization. Thus, M1 functions as the nuclear localization signal of c-myc, and M2 serves some other and essential function.


2018 ◽  
Vol 38 (22) ◽  
Author(s):  
Guido H. Wabnitz ◽  
Henning Kirchgessner ◽  
Beate Jahraus ◽  
Ludmila Umansky ◽  
Shirish Shenolikar ◽  
...  

ABSTRACT While several protein serine/threonine kinases control cytokine production by T cells, the roles of serine/threonine phosphatases are largely unexplored. Here, we analyzed the involvement of protein phosphatase 1α (PP1α) in cytokine synthesis following costimulation of primary human T cells. Small interfering RNA (siRNA)-mediated knockdown of PP1α (PP1KD) or expression of a dominant negative PP1α (D95N-PP1) drastically diminished interleukin-10 (IL-10) production. Focusing on a key transcriptional activator of human IL-10, we demonstrate that nuclear translocation of NF-κB was significantly inhibited in PP1KD or D95N-PP1 cells. Interestingly, knockdown of cofilin, a known substrate of PP1 containing a nuclear localization signal, also prevented nuclear accumulation of NF-κB. Expression of a constitutively active nonphosphorylatable S3A-cofilin in D95N-PP1 cells restored nuclear translocation of NF-κB and IL-10 expression. Subpopulation analysis revealed that defective nuclear translocation of NF-κB was most prominent in CD4+ CD45RA− CXCR3− T cells that included IL-10-producing TH2 cells. Together these findings reveal novel functions for PP1α and its substrate cofilin in T cells namely the regulation of the nuclear translocation of NF-κB and promotion of IL-10 production. These data suggest that stimulation of PP1α could limit the overwhelming immune responses seen in chronic inflammatory diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lama Tarayrah-Ibraheim ◽  
Elital Chass Maurice ◽  
Guy Hadary ◽  
Sharon Ben-Hur ◽  
Alina Kolpakova ◽  
...  

AbstractDuring Drosophila embryonic development, cell death eliminates 30% of the primordial germ cells (PGCs). Inhibiting apoptosis does not prevent PGC death, suggesting a divergence from the conventional apoptotic program. Here, we demonstrate that PGCs normally activate an intrinsic alternative cell death (ACD) pathway mediated by DNase II release from lysosomes, leading to nuclear translocation and subsequent DNA double-strand breaks (DSBs). DSBs activate the DNA damage-sensing enzyme, Poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) and the ATR/Chk1 branch of the DNA damage response. PARP-1 and DNase II engage in a positive feedback amplification loop mediated by the release of PAR polymers from the nucleus and the nuclear accumulation of DNase II in an AIF- and CypA-dependent manner, ultimately resulting in PGC death. Given the anatomical and molecular similarities with an ACD pathway called parthanatos, these findings reveal a parthanatos-like cell death pathway active during Drosophila development.


2009 ◽  
Vol 84 (2) ◽  
pp. 1169-1175 ◽  
Author(s):  
Mathieu Mateo ◽  
St. Patrick Reid ◽  
Lawrence W. Leung ◽  
Christopher F. Basler ◽  
Viktor E. Volchkov

ABSTRACT The Ebolavirus VP24 protein counteracts alpha/beta interferon (IFN-α/β) and IFN-γ signaling by blocking the nuclear accumulation of tyrosine-phosphorylated STAT1 (PY-STAT1). According to the proposed model, VP24 binding to members of the NPI-1 subfamily of karyopherin alpha (KPNα) nuclear localization signal receptors prevents their binding to PY-STAT1, thereby preventing PY-STAT1 nuclear accumulation. This study now identifies two domains of VP24 required for inhibition of IFN-β-induced gene expression and PY-STAT1 nuclear accumulation. We demonstrate that loss of function correlates with loss of binding to KPNα proteins. Thus, the VP24 IFN antagonist function requires the ability of VP24 to interact with KPNα.


Science ◽  
2021 ◽  
Vol 371 (6536) ◽  
pp. 1350-1355
Author(s):  
Weibing Yang ◽  
Sandra Cortijo ◽  
Niklas Korsbo ◽  
Pawel Roszak ◽  
Katharina Schiessl ◽  
...  

Mitogens trigger cell division in animals. In plants, cytokinins, a group of phytohormones derived from adenine, stimulate cell proliferation. Cytokinin signaling is initiated by membrane-associated histidine kinase receptors and transduced through a phosphorelay system. We show that in the Arabidopsis shoot apical meristem (SAM), cytokinin regulates cell division by promoting nuclear shuttling of Myb-domain protein 3R4 (MYB3R4), a transcription factor that activates mitotic gene expression. Newly synthesized MYB3R4 protein resides predominantly in the cytoplasm. At the G2-to-M transition, rapid nuclear accumulation of MYB3R4—consistent with an associated transient peak in cytokinin concentration—feeds a positive feedback loop involving importins and initiates a transcriptional cascade that drives mitosis and cytokinesis. An engineered nuclear-restricted MYB3R4 mimics the cytokinin effects of enhanced cell proliferation and meristem growth.


2003 ◽  
Vol 23 (3) ◽  
pp. 975-987 ◽  
Author(s):  
Odile Filhol ◽  
Arsenio Nueda ◽  
Véronique Martel ◽  
Delphine Gerber-Scokaert ◽  
Maria José Benitez ◽  
...  

ABSTRACT Protein kinase CK2 is a multifunctional enzyme which has long been described as a stable heterotetrameric complex resulting from the association of two catalytic (α or α′) and two regulatory (β) subunits. To track the spatiotemporal dynamics of CK2 in living cells, we fused its catalytic α and regulatory β subunits with green fluorescent protein (GFP). Both CK2 subunits contain nuclear localization domains that target them independently to the nucleus. Imaging of stable cell lines expressing low levels of GFP-CK2α or GFP-CK2β revealed the existence of CK2 subunit subpopulations exhibiting differential dynamics. Once in the nucleus, they diffuse randomly at different rates. Unlike CK2β, CK2α can shuttle, showing the dynamic nature of the nucleocytoplasmic trafficking of the kinase. When microinjected in the cytoplasm, the isolated CK2 subunits are rapidly translocated into the nucleus, whereas the holoenzyme complex remains in this cell compartment, suggesting an intramolecular masking of the nuclear localization sequences that suppresses nuclear accumulation. However, binding of FGF-2 to the holoenzyme triggers its nuclear translocation. Since the substrate specificity of CK2α is dramatically changed by its association with CK2β, the control of the nucleocytoplasmic distribution of each subunit may represent a unique potential regulatory mechanism for CK2 activity.


Development ◽  
2001 ◽  
Vol 128 (7) ◽  
pp. 1081-1088
Author(s):  
D. Dormann ◽  
T. Abe ◽  
C.J. Weijer ◽  
J. Williams

Dd-STATa, the Dictyostelium STAT (signal transducer and activator of transcription) protein, is selectively localised in the nuclei of a small subset of prestalk cells located in the slug tip. Injection of cAMP into the extracellular spaces in the rear of the slug induces rapid nuclear translocation of a Dd-GFP:STATa fusion protein in prespore cells surrounding the site of injection. This suggests that cAMP signals that emanate from the tip direct the localised nuclear accumulation of Dd-STATa. It also shows that prespore cells are competent to respond to cAMP, by Dd-STATa activation, and it implies that cAMP signalling is in some way limiting in the rear of the slug. Co-injection of a specific inhibitor of the cAR1 serpentine cAMP receptor almost completely prevents the cAMP-induced nuclear translocation, showing that most or all of the cAMP signal is transduced by cAR1. Dd-GFP:STATa also rapidly translocates into the nuclei of cells adjoining the front and back cut edges when a slug is bisected. Less severe mechanical disturbances, such as pricking the rear of a slug with an unfilled micropipette, also cause a more limited nuclear translocation of Dd-GFP:STATa. We propose that these signalling events form part of a repair mechanism that is activated when the migrating slug suffers mechanical damage.


1993 ◽  
Vol 105 (2) ◽  
pp. 389-395
Author(s):  
X. Li ◽  
L.D. Etkin

Xenopus nuclear factor 7 (xnf7) is a nuclear phosphoprotein that is encoded by a member of a novel zinc finger gene family and likely functions as a transcription factor. It possesses a nuclear localization signal (NLS) similar to the bipartite basic NLS of nucleoplasmin, but unlike nucleoplasmin, which re-enters nuclei immediately after fertilization, xnf7 remains cytoplasmic until the mid-blastula transition (MBT). We have measured the accumulation of injected labeled xnf7 protein or protein produced from synthetic xnf7 transcripts in the oocyte nuclei (GV). The data show that the NLS of xnf7 functions efficiently in oocytes. Mutations in either of the bipartite basic domains of the xnf7 NLS inhibit nuclear accumulation, while mutations in the spacer sequences have no effect. The xnf7 NLS linked to pyruvate kinase directs the efficient accumulation of this protein into nuclei of early embryos prior to the MBT. These data suggest that retention of the xnf7 protein during development is the result of a mechanism that interferes with the xnf7 NLS function.


Sign in / Sign up

Export Citation Format

Share Document