scholarly journals Utilizing occupancy-detection models with museum specimen data: promise and pitfalls

2021 ◽  
Author(s):  
Vaughn Shirey ◽  
Rassim Khelifa ◽  
Leithen K. M’Gonigle ◽  
Laura Melissa Guzman

AbstractHistorical museum records provide potentially useful data for identifying drivers of change in species occupancy. However, because museum records are typically obtained via many collection methods, methodological developments are needed in order to enable robust inferences. Occupancy-detection models, a relatively new and powerful suite of methods, are a potentially promising avenue because they can account for changes in collection effort through space and time. Here we present a methodological road-map for using occupancy models to analyze historical museum records. We use simulated data-sets to identify how and when patterns in data and/or modelling decisions can bias inference. We focus primarily on the consequences of contrasting methodological approaches for dealing with species’ ranges and inferring species’ non-detections in both space and time. We find that not all data-sets are suitable for occupancy-detection analysis but, under the right conditions (namely, data-sets that span long durations and contain a high fraction of community-wide collections, or collection events that focus on communities of organisms), models can accurately estimate trends. Finally, we present a case-study on eastern North American odonates where we calculate long-term trends of occupancy by using our most robust workflow.

2020 ◽  
Author(s):  
Shah Nawaz Jelil ◽  
Murchana Parasar ◽  
Laura Cancino ◽  
Kimberly Cook

AbstractUnderstanding species trend, decline or growth, is vital to further conservation efforts. Species-habitat relationship studies are equally important for conservation as it helps in understanding the habitat a particular species depends upon, i.e. habitat conservation. However, rare and endemic species are inherently difficult to study and occupancy models are especially useful in such cases. We conducted the first detection, non-detection survey for the white winged duck in Dehing Patkai Wildlife Sanctuary, India to assess site occupancy and test habitat factors that explain its occupancy. We found that white winged duck occupancy was low (0.27 ± 0.21 SE) and detection probability was 0.44 ± 0.30 SE. We found that increasing tree richness and decreasing elevation increased species occupancy. Detection probability was influenced by our effort in that detection increased with increasing number of survey hours. Using two standard approaches, we estimated the optimal number of sites and replicate surveys for future occupancy studies. We further present considerations for future surveys. Considering the sporadic and fragmented information available, we recommend long-term ecological research to better understand the present and future population trends of the species.


2021 ◽  
pp. 004912412110312
Author(s):  
Ramina Sotoudeh ◽  
Paul DiMaggio

Sociologists increasingly face choices among competing algorithms that represent reasonable approaches to the same task, with little guidance in choosing among them. We develop a strategy that uses simulated data to identify the conditions under which different methods perform well and applies what is learned from the simulations to predict which method will perform best on never-before-seen empirical data sets. We apply this strategy to a class of methods that group respondents to attitude surveys according to whether they share construals of a given domain. This allows us to identify the relative strengths and weaknesses of the methods we consider, including relational class analysis, correlational class analysis, and eight other such variants. Results support the “no free lunch” view that researchers should abandon the quest for one best algorithm in favor of matching algorithms to kinds of data for which each is most appropriate and provide direction on how to do so.


2019 ◽  
Vol 45 (9) ◽  
pp. 1183-1198
Author(s):  
Gaurav S. Chauhan ◽  
Pradip Banerjee

Purpose Recent papers on target capital structure show that debt ratio seems to vary widely in space and time, implying that the functional specifications of target debt ratios are of little empirical use. Further, target behavior cannot be adjudged correctly using debt ratios, as they could revert due to mechanical reasons. The purpose of this paper is to develop an alternative testing strategy to test the target capital structure. Design/methodology/approach The authors make use of a major “shock” to the debt ratios as an event and think of a subsequent reversion as a movement toward a mean or target debt ratio. By doing this, the authors no longer need to identify target debt ratios as a function of firm-specific variables or any other rigid functional form. Findings Similar to the broad empirical evidence in developed economies, there is no perceptible and systematic mean reversion by Indian firms. However, unlike developed countries, proportionate usage of debt to finance firms’ marginal financing deficits is extensive; equity is used rather sparingly. Research limitations/implications The trade-off theory could be convincingly refuted at least for the emerging market of India. The paper here stimulated further research on finding reasons for specific financing behavior of emerging market firms. Practical implications The results show that the firms’ financing choices are not only depending on their own firm’s specific variables but also on the financial markets in which they operate. Originality/value This study attempts to assess mean reversion in debt ratios in a unique but reassuring manner. The results are confirmed by extensive calibration of the testing strategy using simulated data sets.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 949
Author(s):  
Jiangyi Wang ◽  
Min Liu ◽  
Xinwu Zeng ◽  
Xiaoqiang Hua

Convolutional neural networks have powerful performances in many visual tasks because of their hierarchical structures and powerful feature extraction capabilities. SPD (symmetric positive definition) matrix is paid attention to in visual classification, because it has excellent ability to learn proper statistical representation and distinguish samples with different information. In this paper, a deep neural network signal detection method based on spectral convolution features is proposed. In this method, local features extracted from convolutional neural network are used to construct the SPD matrix, and a deep learning algorithm for the SPD matrix is used to detect target signals. Feature maps extracted by two kinds of convolutional neural network models are applied in this study. Based on this method, signal detection has become a binary classification problem of signals in samples. In order to prove the availability and superiority of this method, simulated and semi-physical simulated data sets are used. The results show that, under low SCR (signal-to-clutter ratio), compared with the spectral signal detection method based on the deep neural network, this method can obtain a gain of 0.5–2 dB on simulated data sets and semi-physical simulated data sets.


Ecology ◽  
2021 ◽  
Author(s):  
Hannah L. Clipp ◽  
Amber L. Evans ◽  
Brin E. Kessinger ◽  
Kenneth Kellner ◽  
Christopher T. Rota

2021 ◽  
pp. gr.273631.120
Author(s):  
Xinhao Liu ◽  
Huw A Ogilvie ◽  
Luay Nakhleh

Coalescent methods are proven and powerful tools for population genetics, phylogenetics, epidemiology, and other fields. A promising avenue for the analysis of large genomic alignments, which are increasingly common, are coalescent hidden Markov model (coalHMM) methods, but these methods have lacked general usability and flexibility. We introduce a novel method for automatically learning a coalHMM and inferring the posterior distributions of evolutionary parameters using black-box variational inference, with the transition rates between local genealogies derived empirically by simulation. This derivation enables our method to work directly with three or four taxa and through a divide-and-conquer approach with more taxa. Using a simulated data set resembling a human-chimp-gorilla scenario, we show that our method has comparable or better accuracy to previous coalHMM methods. Both species divergence times and population sizes were accurately inferred. The method also infers local genealogies and we report on their accuracy. Furthermore, we discuss a potential direction for scaling the method to larger data sets through a divide-and-conquer approach. This accuracy means our method is useful now, and by deriving transition rates by simulation it is flexible enough to enable future implementations of all kinds of population models.


2018 ◽  
Author(s):  
Michael Nute ◽  
Ehsan Saleh ◽  
Tandy Warnow

AbstractThe estimation of multiple sequence alignments of protein sequences is a basic step in many bioinformatics pipelines, including protein structure prediction, protein family identification, and phylogeny estimation. Statistical co-estimation of alignments and trees under stochastic models of sequence evolution has long been considered the most rigorous technique for estimating alignments and trees, but little is known about the accuracy of such methods on biological benchmarks. We report the results of an extensive study evaluating the most popular protein alignment methods as well as the statistical co-estimation method BAli-Phy on 1192 protein data sets from established benchmarks as well as on 120 simulated data sets. Our study (which used more than 230 CPU years for the BAli-Phy analyses alone) shows that BAli-Phy is dramatically more accurate than the other alignment methods on the simulated data sets, but is among the least accurate on the biological benchmarks. There are several potential causes for this discordance, including model misspecification, errors in the reference alignments, and conflicts between structural alignment and evolutionary alignments; future research is needed to understand the most likely explanation for our observations. multiple sequence alignment, BAli-Phy, protein sequences, structural alignment, homology


2020 ◽  
Author(s):  
Thibaut Sellinger ◽  
Diala Abu Awad ◽  
Aurélien Tellier

AbstractMany methods based on the Sequentially Markovian Coalescent (SMC) have been and are being developed. These methods make use of genome sequence data to uncover population demographic history. More recently, new methods have extended the original theoretical framework, allowing the simultaneous estimation of the demographic history and other biological variables. These methods can be applied to many different species, under different model assumptions, in hopes of unlocking the population/species evolutionary history. Although convergence proofs in particular cases have been given using simulated data, a clear outline of the performance limits of these methods is lacking. We here explore the limits of this methodology, as well as present a tool that can be used to help users quantify what information can be confidently retrieved from given datasets. In addition, we study the consequences for inference accuracy violating the hypotheses and the assumptions of SMC approaches, such as the presence of transposable elements, variable recombination and mutation rates along the sequence and SNP call errors. We also provide a new interpretation of the SMC through the use of the estimated transition matrix and offer recommendations for the most efficient use of these methods under budget constraints, notably through the building of data sets that would be better adapted for the biological question at hand.


2016 ◽  
Author(s):  
Kassian Kobert ◽  
Alexandros Stamatakis ◽  
Tomáš Flouri

The phylogenetic likelihood function is the major computational bottleneck in several applications of evolutionary biology such as phylogenetic inference, species delimitation, model selection and divergence times estimation. Given the alignment, a tree and the evolutionary model parameters, the likelihood function computes the conditional likelihood vectors for every node of the tree. Vector entries for which all input data are identical result in redundant likelihood operations which, in turn, yield identical conditional values. Such operations can be omitted for improving run-time and, using appropriate data structures, reducing memory usage. We present a fast, novel method for identifying and omitting such redundant operations in phylogenetic likelihood calculations, and assess the performance improvement and memory saving attained by our method. Using empirical and simulated data sets, we show that a prototype implementation of our method yields up to 10-fold speedups and uses up to 78% less memory than one of the fastest and most highly tuned implementations of the phylogenetic likelihood function currently available. Our method is generic and can seamlessly be integrated into any phylogenetic likelihood implementation.


Author(s):  
Robin Boyd ◽  
Nick Isaac ◽  
Robert Cooke ◽  
Francesca Mancini ◽  
Tom August ◽  
...  

Species Distribution Essential Biodiversity Variables (SD EBVs; Pereira et al. 2013, Kissling et al. 2017, Jetz et al. 2019) are defined as measurements or estimates of species’ occupancy along the axes of space, time and taxonomy. In the “ideal” case, additional stipulations have been proposed: occupancy should be characterized contiguously along each axis at grain sizes relevant to policy and process (i.e., fine scale); and the SD EBV should be global in extent, or at least span the entirety of the focal taxa’s geographical range (Jetz et al. 2019). These stipulations set the bar very high and, unsurprisingly, most operational SD EBVs fall short of these ideal criteria. In this presentation, I will discuss the major challenges associated with developing the idealized SD EBV. I will demonstrate these challenges using an operational SD EBV spanning ~6000 species in the United Kingdom (UK) over the period 1970 to 2019 as a case study (Outhwaite et al. 2019). In short, this data product comprises annual estimates of occupancy for each species in all sampled 1 km cells across the UK; these are derived from opportunistically-collected species occurrence data using occupancy-detection models (Kéry et al. 2010). Having discussed which of the “ideal” criteria the case study satisfies, I will then touch on what are, in my view, two underappreciated challenges when constructing SD EBVs: dealing with sampling biases in the underlying data and the difficulty in evaluating the extent to which they bias the final product. These challenges should be addressed as a matter of urgency, as SD EBVs are increasingly applied in important settings such as underpinning national and international biodiversity indicators (see e.g., https://geobon.org/ebvs/indicators/).


Sign in / Sign up

Export Citation Format

Share Document