scholarly journals A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms

Author(s):  
Sook-Lei Liew ◽  
Bethany Lo ◽  
Miranda R. Donnelly ◽  
Artemis Zavaliangos-Petropulu ◽  
Jessica N. Jeong ◽  
...  

AbstractAccurate lesion segmentation is critical in stroke rehabilitation research for the quantification of lesion burden and accurate image processing. Current automated lesion segmentation methods for T1-weighted (T1w) MRIs, commonly used in rehabilitation research, lack accuracy and reliability. Manual segmentation remains the gold standard, but it is time-consuming, subjective, and requires significant neuroanatomical expertise. We previously released a large, open-source dataset of stroke T1w MRIs and manually segmented lesion masks (ATLAS v1.2, N=304) to encourage the development of better algorithms. However, many methods developed with ATLAS v1.2 report low accuracy, are not publicly accessible or are improperly validated, limiting their utility to the field. Here we present ATLAS v2.0 (N=955), a larger dataset of T1w stroke MRIs and manually segmented lesion masks that includes both training (public) and test (hidden) data. Algorithm development using this larger sample should lead to more robust solutions, and the hidden test data allows for unbiased performance evaluation via segmentation challenges. We anticipate that ATLAS v2.0 will lead to improved algorithms, facilitating large-scale stroke rehabilitation research.

2017 ◽  
Author(s):  
Sook-Lei Liew ◽  
Julia M. Anglin ◽  
Nick W. Banks ◽  
Matt Sondag ◽  
Kaori L. Ito ◽  
...  

AbstractStroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods.


SLEEP ◽  
2020 ◽  
Author(s):  
Luca Menghini ◽  
Nicola Cellini ◽  
Aimee Goldstone ◽  
Fiona C Baker ◽  
Massimiliano de Zambotti

Abstract Sleep-tracking devices, particularly within the consumer sleep technology (CST) space, are increasingly used in both research and clinical settings, providing new opportunities for large-scale data collection in highly ecological conditions. Due to the fast pace of the CST industry combined with the lack of a standardized framework to evaluate the performance of sleep trackers, their accuracy and reliability in measuring sleep remains largely unknown. Here, we provide a step-by-step analytical framework for evaluating the performance of sleep trackers (including standard actigraphy), as compared with gold-standard polysomnography (PSG) or other reference methods. The analytical guidelines are based on recent recommendations for evaluating and using CST from our group and others (de Zambotti and colleagues; Depner and colleagues), and include raw data organization as well as critical analytical procedures, including discrepancy analysis, Bland–Altman plots, and epoch-by-epoch analysis. Analytical steps are accompanied by open-source R functions (depicted at https://sri-human-sleep.github.io/sleep-trackers-performance/AnalyticalPipeline_v1.0.0.html). In addition, an empirical sample dataset is used to describe and discuss the main outcomes of the proposed pipeline. The guidelines and the accompanying functions are aimed at standardizing the testing of CSTs performance, to not only increase the replicability of validation studies, but also to provide ready-to-use tools to researchers and clinicians. All in all, this work can help to increase the efficiency, interpretation, and quality of validation studies, and to improve the informed adoption of CST in research and clinical settings.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jimena Olveres ◽  
Erik Carbajal-Degante ◽  
Boris Escalante-Ramírez ◽  
Enrique Vallejo ◽  
Carla María García-Moreno

Segmentation tasks in medical imaging represent an exhaustive challenge for scientists since the image acquisition nature yields issues that hamper the correct reconstruction and visualization processes. Depending on the specific image modality, we have to consider limitations such as the presence of noise, vanished edges, or high intensity differences, known, in most cases, as inhomogeneities. New algorithms in segmentation are required to provide a better performance. This paper presents a new unified approach to improve traditional segmentation methods as Active Shape Models and Chan-Vese model based on level set. The approach introduces a combination of local analysis implementations with classic segmentation algorithms that incorporates local texture information given by the Hermite transform and Local Binary Patterns. The mixture of both region-based methods and local descriptors highlights relevant regions by considering extra information which is helpful to delimit structures. We performed segmentation experiments on 2D images including midbrain in Magnetic Resonance Imaging and heart’s left ventricle endocardium in Computed Tomography. Quantitative evaluation was obtained with Dice coefficient and Hausdorff distance measures. Results display a substantial advantage over the original methods when we include our characterization schemes. We propose further research validation on different organ structures with promising results.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mohammadreza Yaghoobi ◽  
Krzysztof S. Stopka ◽  
Aaditya Lakshmanan ◽  
Veera Sundararaghavan ◽  
John E. Allison ◽  
...  

AbstractThe PRISMS-Fatigue open-source framework for simulation-based analysis of microstructural influences on fatigue resistance for polycrystalline metals and alloys is presented here. The framework uses the crystal plasticity finite element method as its microstructure analysis tool and provides a highly efficient, scalable, flexible, and easy-to-use ICME community platform. The PRISMS-Fatigue framework is linked to different open-source software to instantiate microstructures, compute the material response, and assess fatigue indicator parameters. The performance of PRISMS-Fatigue is benchmarked against a similar framework implemented using ABAQUS. Results indicate that the multilevel parallelism scheme of PRISMS-Fatigue is more efficient and scalable than ABAQUS for large-scale fatigue simulations. The performance and flexibility of this framework is demonstrated with various examples that assess the driving force for fatigue crack formation of microstructures with different crystallographic textures, grain morphologies, and grain numbers, and under different multiaxial strain states, strain magnitudes, and boundary conditions.


SLEEP ◽  
2021 ◽  
Author(s):  
Dorothee Fischer ◽  
Elizabeth B Klerman ◽  
Andrew J K Phillips

Abstract Study Objectives Sleep regularity predicts many health-related outcomes. Currently, however, there is no systematic approach to measuring sleep regularity. Traditionally, metrics have assessed deviations in sleep patterns from an individual’s average. Traditional metrics include intra-individual standard deviation (StDev), Interdaily Stability (IS), and Social Jet Lag (SJL). Two metrics were recently proposed that instead measure variability between consecutive days: Composite Phase Deviation (CPD) and Sleep Regularity Index (SRI). Using large-scale simulations, we investigated the theoretical properties of these five metrics. Methods Multiple sleep-wake patterns were systematically simulated, including variability in daily sleep timing and/or duration. Average estimates and 95% confidence intervals were calculated for six scenarios that affect measurement of sleep regularity: ‘scrambling’ the order of days; daily vs. weekly variation; naps; awakenings; ‘all-nighters’; and length of study. Results SJL measured weekly but not daily changes. Scrambling did not affect StDev or IS, but did affect CPD and SRI; these metrics, therefore, measure sleep regularity on multi-day and day-to-day timescales, respectively. StDev and CPD did not capture sleep fragmentation. IS and SRI behaved similarly in response to naps and awakenings but differed markedly for all-nighters. StDev and IS required over a week of sleep-wake data for unbiased estimates, whereas CPD and SRI required larger sample sizes to detect group differences. Conclusions Deciding which sleep regularity metric is most appropriate for a given study depends on a combination of the type of data gathered, the study length and sample size, and which aspects of sleep regularity are most pertinent to the research question.


Author(s):  
P. Salgado ◽  
T.-P. Azevedo Perdicoúlis

Medical image techniques are used to examine and determine the well-being of the foetus during pregnancy. Digital image processing (DIP) is essential to extract valuable information embedded in most biomedical signals. After, intelligent segmentation methods, based on classifier algorithms, must be applied to identify structures and relevant features from previous data. The success of both is essential for helping doctors to identify adverse health conditions from the medical images. To obtain easy and reliable DIP methods for foetus images in real-time, at different gestational ages, aware pre-processing needs to be applied to the images. Thence, some data features are extracted that are meant to be used as input to the segmentation algorithms presented in this work. Due to the high dimension of the problems in question, assemblage of the data is also desired. The segmentation of the images is done by revisiting the K-nn algorithm that is a conventional nonparametric classifier. Besides its simplicity, its power to accomplish high classification results in medical applications has been demonstrated. In this work two versions of this algorithm are presented (i) an enhancement of the standard version by aggregating the data apriori and (ii) an iterative version of the same method where the training set (TS) is not static. The procedure is demonstrated in two experiments, where two images of different technologies were selected: a magnetic resonance image and an ultrasound image, respectively. The results were assessed by comparison with the K-means clustering algorithm, a well-known and robust method for this type of task. Both described versions showed results close to 100% matching with the ones obtained by the validation method, although the iterative version displays much higher reliability in the classification.


2021 ◽  
Vol 27 (S1) ◽  
pp. 62-63
Author(s):  
Alexander M Rakowski ◽  
Joydeep Munshi ◽  
Benjamin Savitzky ◽  
Shreyas Cholia ◽  
Matthew L Henderson ◽  
...  
Keyword(s):  

2011 ◽  
Vol 07 (01) ◽  
pp. 155-171 ◽  
Author(s):  
H. D. CHENG ◽  
YANHUI GUO ◽  
YINGTAO ZHANG

Image segmentation is an important component in image processing, pattern recognition and computer vision. Many segmentation algorithms have been proposed. However, segmentation methods for both noisy and noise-free images have not been studied in much detail. Neutrosophic set (NS), a part of neutrosophy theory, studies the origin, nature, and scope of neutralities, as well as their interaction with different ideational spectra. However, neutrosophic set needs to be specified and clarified from a technical point of view for a given application or field to demonstrate its usefulness. In this paper, we apply neutrosophic set and define some operations. Neutrosphic set is integrated with an improved fuzzy c-means method and employed for image segmentation. A new operation, α-mean operation, is proposed to reduce the set indeterminacy. An improved fuzzy c-means (IFCM) is proposed based on neutrosophic set. The computation of membership and the convergence criterion of clustering are redefined accordingly. We have conducted experiments on a variety of images. The experimental results demonstrate that the proposed approach can segment images accurately and effectively. Especially, it can segment the clean images and the images having different gray levels and complex objects, which is the most difficult task for image segmentation.


Sign in / Sign up

Export Citation Format

Share Document