scholarly journals A Cytoplasmic Dynein Heavy Chain Is Required for Oscillatory Nuclear Movement of Meiotic Prophase and Efficient Meiotic Recombination in Fission Yeast

1999 ◽  
Vol 145 (6) ◽  
pp. 1233-1250 ◽  
Author(s):  
Ayumu Yamamoto ◽  
Robert R. West ◽  
J. Richard McIntosh ◽  
Yasushi Hiraoka

Meiotic recombination requires pairing of homologous chromosomes, the mechanisms of which remain largely unknown. When pairing occurs during meiotic prophase in fission yeast, the nucleus oscillates between the cell poles driven by astral microtubules. During these oscillations, the telomeres are clustered at the spindle pole body (SPB), located at the leading edge of the moving nucleus and the rest of each chromosome dangles behind. Here, we show that the oscillatory nuclear movement of meiotic prophase is dependent on cytoplasmic dynein. We have cloned the gene encoding a cytoplasmic dynein heavy chain of fission yeast. Most of the cells disrupted for the gene show no gross defect during mitosis and complete meiosis to form four viable spores, but they lack the nuclear movements of meiotic prophase. Thus, the dynein heavy chain is required for these oscillatory movements. Consistent with its essential role in such nuclear movement, dynein heavy chain tagged with green fluorescent protein (GFP) is localized at astral microtubules and the SPB during the movements. In dynein-disrupted cells, meiotic recombination is significantly reduced, indicating that the dynein function is also required for efficient meiotic recombination. In accordance with the reduced recombination, which leads to reduced crossing over, chromosome missegregation is increased in the mutant. Moreover, both the formation of a single cluster of centromeres and the colocalization of homologous regions on a pair of homologous chromosomes are significantly inhibited in the mutant. These results strongly suggest that the dynein-driven nuclear movements of meiotic prophase are necessary for efficient pairing of homologous chromosomes in fission yeast, which in turn promotes efficient meiotic recombination.

2001 ◽  
Vol 12 (12) ◽  
pp. 3933-3946 ◽  
Author(s):  
Ayumu Yamamoto ◽  
Chihiro Tsutsumi ◽  
Hiroaki Kojima ◽  
Kazuhiro Oiwa ◽  
Yasushi Hiraoka

During meiotic prophase in fission yeast, the nucleus migrates back and forth between the two ends of the cell, led by the spindle pole body (SPB). This nuclear oscillation is dependent on astral microtubules radiating from the SPB and a microtubule motor, cytoplasmic dynein. Here we have examined the dynamic behavior of astral microtubules labeled with the green fluorescent protein during meiotic prophase with the use of optical sectioning microscopy. During nuclear migrations, the SPB mostly follows the microtubules that extend toward the cell cortex. SPB migrations start when these microtubules interact with the cortex and stop when they disappear, suggesting that these microtubules drive nuclear migrations. The microtubules that are followed by the SPB often slide along the cortex and are shortened by disassembly at their ends proximal to the cortex. In dynein-mutant cells, where nuclear oscillations are absent, the SPB never migrates by following microtubules, and microtubule assembly/disassembly dynamics is significantly altered. Based on these observations, together with the frequent accumulation of dynein at a cortical site where the directing microtubules interact, we propose a model in which dynein drives nuclear oscillation by mediating cortical microtubule interactions and regulating the dynamics of microtubule disassembly at the cortex.


2002 ◽  
Vol 13 (3) ◽  
pp. 930-946 ◽  
Author(s):  
Futaba Miki ◽  
Koei Okazaki ◽  
Mizuki Shimanuki ◽  
Ayumu Yamamoto ◽  
Yasushi Hiraoka ◽  
...  

A Schizosaccharomyces pombe spindle pole body (SPB) protein interacts in a two-hybrid system with Dlc1, which belongs to the 14-kDa Tctex-1 dynein light chain family. Green fluorescent protein-tagged Dlc1 accumulated at the SPB throughout the life cycle. During meiotic prophase, Dlc1 was present along astral microtubules and microtubule-anchoring sites on the cell cortex, reminiscent of the cytoplasmic dynein heavy chain Dhc1. In a dlc1-null mutant, Dhc1-dependent nuclear movement in meiotic prophase became irregular in its duration and direction. Dhc1 protein was displaced from the cortex anchors and the formation of microtubule bundle(s) that guide nuclear movement was impaired in the mutant. Meiotic recombination in the dlc1 mutant was reduced to levels similar to that in the dhc1 mutant. Dlc1 and Dhc1 also have roles in karyogamy and rDNA relocation during the sexual phase. Strains mutated in both the dlc1 and dhc1loci displayed more severe defects in recombination, karyogamy, and sporulation than in either single mutant alone, suggesting that Dlc1 is involved in nuclear events that are independent of Dhc1. S. pombe contains a homolog of the 8-kDa dynein light chain, Dlc2. This class of dynein light chain, however, is not essential in either the vegetative or sexual phases.


1998 ◽  
Vol 111 (6) ◽  
pp. 701-712 ◽  
Author(s):  
D.Q. Ding ◽  
Y. Chikashige ◽  
T. Haraguchi ◽  
Y. Hiraoka

Using a computerized fluorescence microscope system to observe fluorescently stained cellular structures in vivo, we have examined the dynamics of chromosomes and microtubules during the process of meiosis in the fission yeast Schizosaccharomyces pombe. Fission yeast meiotic prophase is characterized by a distinctive type of nuclear movement that is led by telomeres clustered at the spindle-pole body (the centrosome-equivalent structure in fungi): the nucleus oscillates back and forth along the cell axis, moving continuously between the two ends of the cell for some hours prior to the meiotic divisions. To obtain a dynamic view of this oscillatory nuclear movement in meiotic prophase, we visualized microtubules and chromosomes in living cells using jellyfish green fluorescent protein fused with alpha-tubulin and a DNA-specific fluorescent dye, Hoechst 33342, respectively. Continuous observation of chromosomes and microtubules in these cells demonstrated that the oscillatory nuclear movement is mediated by dynamic reorganization of astral microtubules originating from the spindle-pole body. During each half-oscillatory period, the microtubules extending rearward from the leading edge of the nucleus elongate to drive the nucleus to one end of the cell. When the nucleus reversed direction, its motion during the second half of the oscillation was not driven by the same microtubules that drove its motion during the first half, but rather by newly assembled microtubules. Reversible inhibition of nuclear movement by an inhibitor of microtubule polymerization, thiabendazole, confirmed the involvement of astral microtubules in oscillatory nuclear movement. The speed of the movement fluctuated within a range 0 to 15 micron/minute, with an average of about 5 microm/minute. We propose a model in which the oscillatory nuclear movement is mediated by dynamic instability and selective stabilization of astral microtubules.


2003 ◽  
Vol 14 (3) ◽  
pp. 871-888 ◽  
Author(s):  
Vladimir P. Efimov

The NUDF protein of the filamentous fungus Aspergillus nidulans functions in the cytoplasmic dynein pathway. It binds several proteins, including the NUDE protein. Green fluorescent protein-tagged NUDF and NUDA (dynein heavy chain) localize to linearly moving dashes (“comets”) that coincide with microtubule ends. Herein, deletion of the nudE gene did not eliminate the comets of NUDF and NUDA, but affected the behavior of NUDA. Comets were also observed with the green fluorescent protein-tagged NUDE and its nonfunctional C-terminal domain. In addition, overexpressed NUDA and NUDE accumulated in specks that were either immobile or bounced randomly. Neither comets nor specks were observed with the functional N-terminal domain of NUDE, indicating that these structures are not essential for NUDE function. Furthermore, NUDF overproduction totally suppressed deletion of the nudEgene. This implies that the function of NUDE is secondary to that of NUDF. Unexpectedly, NUDF overproduction inhibited one conditionalnudA mutant and all tested apsA mutants. An allele-specific interaction between the nudF andnudA genes is consistent with a direct interaction between NUDF and dynein heavy chain. Because APSA and its yeast homolog Num1p are cortical proteins, an interaction between thenudF and apsA genes suggests a role for NUDF at the cell cortex.


2012 ◽  
Vol 23 (10) ◽  
pp. 1799-1811 ◽  
Author(s):  
Midori Ohta ◽  
Masamitsu Sato ◽  
Masayuki Yamamoto

During meiosis, the centrosome/spindle pole body (SPB) must be regulated in a manner distinct from that of mitosis to achieve a specialized cell division that will produce gametes. In this paper, we demonstrate that several SPB components are localized to SPBs in a meiosis-specific manner in the fission yeast Schizosaccharomyces pombe. SPB components, such as Cut12, Pcp1, and Spo15, which stay on the SPB during the mitotic cell cycle, disassociate from the SPB during meiotic prophase and then return to the SPB immediately before the onset of meiosis I. Interestingly, the polo kinase Plo1, which normally localizes to the SPB during mitosis, is excluded from them in meiotic prophase, when meiosis-specific, horse-tail nuclear movement occurs. We found that exclusion of Plo1 during this period was essential to properly remodel SPBs, because artificial targeting of Plo1 to SPBs resulted in an overduplication of SPBs. We also found that the centrin Cdc31 was required for meiotic SPB remodeling. Thus Plo1 and a centrin play central roles in the meiotic SPB remodeling, which is essential for generating the proper number of meiotic SPBs and, thereby provide unique characteristics to meiotic divisions.


2009 ◽  
Vol 20 (11) ◽  
pp. 2722-2730 ◽  
Author(s):  
Marina L. Ellefson ◽  
Francis J. McNally

During female meiosis in animals, the meiotic spindle is attached to the egg cortex by one pole during anaphase to allow selective disposal of half the chromosomes in a polar body. In Caenorhabditis elegans, this anaphase spindle position is achieved sequentially through kinesin-1–dependent early translocation followed by anaphase-promoting complex (APC)-dependent spindle rotation. Partial depletion of cytoplasmic dynein heavy chain by RNA interference blocked spindle rotation without affecting early translocation. Dynein depletion also blocked the APC-dependent late translocation that occurs in kinesin-1–depleted embryos. Time-lapse imaging of green fluorescent protein-tagged dynein heavy chain as well as immunofluorescence with dynein-specific antibodies revealed that dynein starts to accumulate at spindle poles just before the initiation of rotation or late translocation. Accumulation of dynein at poles was kinesin-1 independent and APC dependent, just like dynein driven spindle movements. This represents a case of kinesin-1/dynein coordination in which these two motors of opposite polarity act sequentially and independently on a cargo to move it in the same direction.


2021 ◽  
Author(s):  
Takeshi Sakuno ◽  
Sanki Tashiro ◽  
Hideki Tanizawa ◽  
Osamu Iwasaki ◽  
Da-Qiao Ding ◽  
...  

During meiotic prophase, cohesin-dependent axial structures are formed in the synaptonemal complex (SC). However, the functional correlation between these structures and cohesion remains elusive. Here, we examined the formation of the cohesin-dependent axial structure in fission yeast, which forms atypical SCs composed of linear elements (LinEs) resembling the lateral elements of SC but lacking the central elements. The results demonstrated that Rec8 cohesin is crucial for the formation of the loop-axis structure within the atypical SC. Furthermore, the Rec8-mediated loop-axis structure is formed in the absence of LinEs and provides a structural platform for aligning homologous chromosomes. We also identified a rec8 mutant that lost the ability to assemble the loop-axis structure without losing cohesion. Remarkably, this mutant showed defects in the LinE assembly, resulting in a significant reduction in meiotic recombination. Collectively, our results demonstrate an essential role for the Rec8-dependent loop-axis structure in LinE assembly, facilitating meiotic recombination.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Gheorghe Cojoc ◽  
Ana-Maria Florescu ◽  
Alexander Krull ◽  
Anna H. Klemm ◽  
Nenad Pavin ◽  
...  

Abstract Kinetochores are protein complexes on the chromosomes, whose function as linkers between spindle microtubules and chromosomes is crucial for proper cell division. The mechanisms that facilitate kinetochore capture by microtubules are still unclear. In the present study, we combine experiments and theory to explore the mechanisms of kinetochore capture at the onset of meiosis I in fission yeast. We show that kinetochores on homologous chromosomes move together, microtubules are dynamic and pivot around the spindle pole, and the average capture time is 3–4 minutes. Our theory describes paired kinetochores on homologous chromosomes as a single object, as well as angular movement of microtubules and their dynamics. For the experimentally measured parameters, the model reproduces the measured capture kinetics and shows that the paired configuration of kinetochores accelerates capture, whereas microtubule pivoting and dynamics have a smaller contribution. Kinetochore pairing may be a general feature that increases capture efficiency in meiotic cells.


2006 ◽  
Vol 173 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Takamune T. Saito ◽  
Daisuke Okuzaki ◽  
Hiroshi Nojima

During meiotic prophase I of the fission yeast Schizosaccharomyces pombe, oscillatory nuclear movement occurs. This promotes homologous chromosome pairing and recombination and involves cortical dynein, which plays a pivotal role by generating a pulling force with the help of an unknown dynein anchor. We show that Mcp5, the homologue of the budding yeast dynein anchor Num1, may be this putative dynein anchor. mcp5+ is predominantly expressed during meiotic prophase, and GFP-Mcp5 localizes at the cell cortex. Moreover, the mcp5Δ strain lacks the oscillatory nuclear movement. Accordingly, homologous pairing and recombination rates of the mcp5Δ strain are significantly reduced. Furthermore, the cortical localization of dynein heavy chain 1 appears to be reduced in mcp5Δ cells. Finally, the full function of Mcp5 requires its coiled-coil and pleckstrin homology (PH) domains. Our results suggest that Mcp5 localizes at the cell cortex through its PH domain and functions as a dynein anchor, thereby facilitating nuclear oscillation.


1995 ◽  
Vol 108 (5) ◽  
pp. 1883-1893 ◽  
Author(s):  
Y. Tanaka ◽  
Z. Zhang ◽  
N. Hirokawa

RT-PCR cloning was performed to find unknown members of the dynein superfamily expressed in rat brain. Six kinds of degenerate primers designed for the dynein catalytic domain consensuses were used for extensive PCR amplifications. We have sequenced 550 plasmid clones which turned out to include 13 kinds of new dynein-like sequences (DLP1-8, 9A/B, 10–12) and cytoplasmic dynein heavy chain. In these clones, alternative splicing was detected for a 105 nt-domain containing the CFDEFNRI consensus just downstream of the most N-terminal P-loop (DLP9A and 9B). By using these obtained sequences, initial hybridization studies were performed. Genomic Southern blotting showed each sequence corresponds to a single copy of the gene, while northern blotting of adult brain presented more than one band for some subtypes. We further accomplished molecular evolutionary analysis to recognize their phylogenetic origins for the axonemal and non-axonemal (cytoplasmic) functions. Different methods (UPGMA, NJ and MP) presented well coincident phylogenetic trees from 44 partial amino acid sequences of dynein heavy chain from various eukaryotes. The trunk for all the cytoplasmic dynein heavy chain homologues diverged directly from the root of the phylogenetic tree, suggesting that the first dynein gene duplication defined two distinct functions as respective subfamilies. Of particular interest, we found a duplication event of the cytoplasmic dynein heavy chain gene giving rise to another subtype, DLP4, located between the divergence of yeast and that of Dictyostelium. Such evolutionary topology builds up an inceptive hypothesis that there are at least two non-axonemal dynein heavy chains in mammals.


Sign in / Sign up

Export Citation Format

Share Document