scholarly journals MULTITRAIT ANALYSIS EXPANDS GENETIC RISK FACTORS IN CARDIOEMBOLIC STROKE

Author(s):  
Jara Carcel-Marquez ◽  
Elena Muino ◽  
Cristina Gallego-Fabrega ◽  
Natalia Cullell ◽  
Miquel Lledos ◽  
...  

Background and Purpose: The genetic architecture of cardioembolic stroke (CES) is still poorly understood. Atrial fibrillation (AF) is the main cause of CES, with which it shares heritability. We aimed to discover novel loci associated with CES by performing a Multitrait Analysis of the GWAS (MTAG) with atrial fibrillation genetic data. Methods: For the MTAG analysis we used the MEGASTROKE cohort, which comprises European patients with CES and controls (n=362,661) and an AF cohort composed of 1,030,836 subjects. Regional genetic pleiotropy of the significant results was explored using an alternative Bayesian approach with GWAS-pairwise method. A replication was performed in an independent European cohort comprising 9,105 subjects using a Genome Wide Association Study (GWAS). Results: MTAG-CES analysis revealed 40 novel and significant loci (p-value<5x10-8) associated with CES, four of which had not previously been associated with AF. A significant replication was assessed for eight novel loci: CAV1, IGF1R, KIAA1755, NEURL1, PRRX1, SYNE2, TEX41 and WIPF1, showing a p-value<0.05 in the CES vs controls independent analysis. KIAA1755, a locus not previously described associated with AF. Interestingly, 51 AF risk loci were not associated with CES according to GWAS-pairwise analysis. Gene Ontology (GO) analysis revealed that these exclusive AF genes from the 51 loci participate in processes related mainly to cardiac development, whereas genes associated with AF and CES participate mainly in muscle contraction and the conduction of electrical impulses. Conclusions: We found eight new loci associated with CES. In addition, this study provides novel insights into the pathogenesis of CES, highlighting multiple candidate genes for future functional experiments.

2018 ◽  
Author(s):  
Jessica van Setten ◽  
Jennifer A. Brody ◽  
Yalda Jamshidi ◽  
Brenton R. Swenson ◽  
Anne M. Butler ◽  
...  

ABSTRACTElectrocardiographic PR interval measures atrial and atrioventricular depolarization and conduction, and abnormal PR interval is a risk factor for atrial fibrillation and heart block. We performed a genome-wide association study in over 92,000 individuals of European descent and identified 44 loci associated with PR interval (34 novel). Examination of the 44 loci revealed known and novel biological processes involved in cardiac atrial electrical activity, and genes in these loci were highly over-represented in several cardiac disease processes. Nearly half of the 61 independent index variants in the 44 loci were associated with atrial or blood transcript expression levels, or were in high linkage disequilibrium with one or more missense variants. Cardiac regulatory regions of the genome as measured by cardiac DNA hypersensitivity sites were enriched for variants associated with PR interval, compared to non-cardiac regulatory regions. Joint analyses combining PR interval with heart rate, QRS interval, and atrial fibrillation identified additional new pleiotropic loci. The majority of associations discovered in European-descent populations were also present in African-American populations. Meta-analysis examining over 105,000 individuals of African and European descent identified additional novel PR loci. These additional analyses identified another 13 novel loci. Together, these findings underscore the power of GWAS to extend knowledge of the molecular underpinnings of clinical processes.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 163-164
Author(s):  
Anastasia Gurinovich ◽  
Kaare Christensen ◽  
Marianne Nygaard ◽  
Jonas Mengel-From ◽  
Stacy Andersen ◽  
...  

Abstract Some cognitive abilities, such as vocabulary, are resilient to brain aging, while others such as conceptual reasoning, memory, and processing speed, decline with age and their rate of decline is genetically regulated. Despite the strong genetic heritability of processing speed assessed by the digit symbol substitution test (DSST), previous studies have failed to identify robust common genetic variants associated with this test. The Long Life Family Study (LLFS) includes long lived individuals and their family members who maintain good DSST scores as they age and who may carry variants associated with better DSST. We therefore conducted a genome-wide association study (GWAS) of DSST in LLFS using ~15M genetic variants imputed to the HRC panel of 64,940 haplotypes with 39,635,008 sites and replicated the findings using genetic data imputed to the 1000 Genomes phase 3 reference panel combining two Danish cohorts: the Middle Aged Danish Twins and the Longitudinal Study of Aging Danish Twins. The GWAS in LLFS discovered 20 rare genetic variants reaching genome-wide significance (p-value &lt; 5x10-8), including 18 variants associated with better processing speed with large effect size. The genetic associations of rs7623455, rs9821776, rs9821587, rs78704059 in chromosome 3 were replicated in the combined Danish cohort. These genetic variants tagged two hormone receptor related genes, THRB and RARB, both related to cognitive aging. Further gene-based tests in LLFS confirmed that these two genes have protective variants associated with better processing speed.


2021 ◽  
Author(s):  
Ho Namkoong ◽  
Ryuya Edahiro ◽  
Koichi Fukunaga ◽  
Yuya Shirai ◽  
Kyuto Sonehara ◽  
...  

To elucidate the host genetic loci affecting severity of SARS-CoV-2 infection, or Coronavirus disease 2019 (COVID-19), is an emerging issue in the face of the current devastating pandemic. Here, we report a genome-wide association study (GWAS) of COVID-19 in a Japanese population led by the Japan COVID-19 Task Force, as one of the initial discovery GWAS studies performed on a non-European population. Enrolling a total of 2,393 cases and 3,289 controls, we not only replicated previously reported COVID-19 risk variants (e.g., LZTFL1, FOXP4, ABO, and IFNAR2), but also found a variant on 5p35 (rs60200309-A at DOCK2) that was significantly associated with severe COVID-19 in younger (<65 years of age) patients with a genome-wide significant p-value of 1.2 × 10-8 (odds ratio = 2.01, 95% confidence interval = 1.58-2.55). This risk allele was prevalent in East Asians, including Japanese (minor allele frequency [MAF] = 0.097), but rarely found in Europeans. Cross-population Mendelian randomization analysis made a causal inference of a number of complex human traits on COVID-19. In particular, obesity had a significant impact on severe COVID-19. The presence of the population-specific risk allele underscores the need of non-European studies of COVID-19 host genetics.


2017 ◽  
Author(s):  
Toni-Kim Clarke ◽  
Mark J. Adams ◽  
Gail Davies ◽  
David M. Howard ◽  
Lynsey S. Hall ◽  
...  

AbstractAlcohol consumption has been linked to over 200 diseases and is responsible for over 5% of the global disease burden. Well known genetic variants in alcohol metabolizing genes, e.g. ALDH2, ADH1B, are strongly associated with alcohol consumption but have limited impact in European populations where they are found at low frequency. We performed a genome-wide association study (GWAS) of self-reported alcohol consumption in 112,117 individuals in the UK Biobank (UKB) sample of white British individuals. We report significant genome-wide associations at 8 independent loci. These include SNPs in alcohol metabolizing genes (ADH1B/ADH1C/ADH5) and 2 loci in KLB, a gene recently associated with alcohol consumption. We also identify SNPs at novel loci including GCKR, PXDN, CADM2 and TNFRSF11A. Gene-based analyses found significant associations with genes implicated in the neurobiology of substance use (CRHR1, DRD2), and genes previously associated with alcohol consumption (AUTS2). GCTA-GREML analyses found a significant SNP-based heritability of self-reported alcohol consumption of 13% (S.E.=0.01). Sex-specific analyses found largely overlapping GWAS loci and the genetic correlation between male and female alcohol consumption was 0.73 (S.E.=0.09, p-value = 1.37 x 10−16). Using LD score regression, genetic overlap was found between alcohol consumption and schizophrenia (rG=0.13, S.E=0.04), HDL cholesterol (rG=0.21, S.E=0.05), smoking (rG=0.49, S.E=0.06) and various anthropometric traits (e.g. Overweight, rG=-0.19, S.E.=0.05). This study replicates the association between alcohol consumption and alcohol metabolizing genes and KLB, and identifies 4 novel gene associations that should be the focus of future studies investigating the neurobiology of alcohol consumption.


2014 ◽  
Vol 114 (4) ◽  
pp. 593-600 ◽  
Author(s):  
Matthew J. Kolek ◽  
Todd L. Edwards ◽  
Raafia Muhammad ◽  
Adnan Balouch ◽  
M. Benjamin Shoemaker ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 733
Author(s):  
Natalia Hernandez-Pacheco ◽  
Mario Gorenjak ◽  
Jiang Li ◽  
Katja Repnik ◽  
Susanne J. Vijverberg ◽  
...  

Inhaled corticosteroids (ICS) are the most common asthma controller medication. An important contribution of genetic factors in ICS response has been evidenced. Here, we aimed to identify novel genetic markers involved in ICS response in asthma. A genome-wide association study (GWAS) of the change in lung function after 6 weeks of ICS treatment was performed in 166 asthma patients from the SLOVENIA study. Patients with an improvement in lung function ≥8% were considered as ICS responders. Suggestively associated variants (p-value ≤ 5 × 10−6) were evaluated in an independent study (n = 175). Validation of the association with asthma exacerbations despite ICS use was attempted in European (n = 2681) and admixed (n = 1347) populations. Variants previously associated with ICS response were also assessed for replication. As a result, the SNP rs1166980 from the ROBO2 gene was suggestively associated with the change in lung function (OR for G allele: 7.01, 95% CI: 3.29–14.93, p = 4.61 × 10−7), although this was not validated in CAMP. ROBO2 showed gene-level evidence of replication with asthma exacerbations despite ICS use in Europeans (minimum p-value = 1.44 × 10−5), but not in admixed individuals. The association of PDE10A-T with ICS response described by a previous study was validated. This study suggests that ROBO2 could be a potential novel locus for ICS response in Europeans.


2021 ◽  
Author(s):  
Pi-Hua Liu ◽  
Gwo-Tsann Chuang ◽  
Chia-Ni Hsiung ◽  
Wei-Shun Yang ◽  
Hsiao-Chia Ku ◽  
...  

Abstract SummaryPurpose: Melatonin exerts a wide range of effects among various tissues and organs. However, there is currently no study to investigate the genetic determinants of melatonin secretion. Here, we conducted a genome-wide association study (GWAS) for melatonin secretion using morning urine 6-hydroxymelatonin sulfate-to-creatinine ratio (UMCR). Methods: We initially enrolled 5,000 participants from Taiwan Biobank in this study. After excluding individuals that did not have their urine collected in the morning and those who failed to pass quality control, association of single nucleotide polymorphisms with log-transformed UMCR adjusted for age, sex and principal components of ancestry were analyzed. A second model additionally adjusted for estimated glomerular filtration rate (eGFR). Results: A total of 2,504 participants underwent the genome-wide analysis. Six candidate loci associated with log UMCR (P value ranging from 7.54 x 10-7 to 4.65 x 10-6) encompassing GALNT15, ZFHX3, NKAIN2, MME and NBPF22P were identified. Similar results were yielded with further adjustment for eGFR. Interestingly, the identified genes are associated with central nervous system function and clinical condition such as Alzheimer's disease or sleep disorders.Conclusions: We conducted the first GWAS for melatonin secretion and identified six candidate genetic loci associated with melatonin level. Replication and functional studies are needed in the future.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2057-2057
Author(s):  
Florence Magrangeas ◽  
Rowan Kuiper ◽  
Hervé Avet-loiseau ◽  
Wilfried Gouraud ◽  
Catherine Guérin ◽  
...  

Abstract Introduction: Bortezomib has become an important part of myeloma therapy, despite the occurrence of toxicities such as bortezomib induced peripheral neuropathy (BiPN). Since effective prophylactic treatment is lacking, onset of BiPN can only be remedied by dose reduction or stop of treatment. Here, using a genome-wide genotyping method, we investigated the potential genetic predisposition to BiPN in MM patients who received bortezomib-dexamethasone (VD) induction therapy prior to autologous stem-cell transplantation (ASCT). Methods: We performed a genome-wide association study using the Affymetrix SNP 6.0 platform. In total 469 cases from the IFM 2005-01, IFM2007-02 clinical trials or routine diagnostic were included as discovery cohort. Another 114 samples from the HOVON-65/GMMG-HD4 trial were used as validation. Patients with BiPN grade 2 or higher after initiation of bortezomib treatment were assigned as cases (n=155 in discovery, n=40 in validation) and the remaining patients that did not developed BiPN were considered controls (n=314 in discovery, n=74 in validation). Additional exclusion criteria were a minor allele frequency ≤ 5%, genotype frequency < 95% or Hardy Weinberg equilibrium p-value <1 x 10-5; 371,075 tagging SNPs were thus included for analysis. Association of SNPs to BiPN was tested using a Cochran-Armitage trend test. Six SNPs were found with parametric p-value < 1 x 10-5. These SNPs were validated using the validation cohort. Results: Of three loci identified by six SNPs in the discovery cohort, one previously unreported gene locus (rs2839629) remained associated to BiPN in the validation data set. This locus at 21q22.3 had odd ratios of 1.89 (p<1x10-6) and 2.02 (p = 0.02) in the discovery and validation cohorts, respectively. It is localized in the 3’ UTR of PBX/knotted 1 homeobox 1 (PKNOX1; alias PREP1), which encodes for a homeodomain transcription factor. Amongst others, PKNOX1 may modulate levels of chemokine monocyte chemoattractant protein-1 (MCP-1). MCP-1 is universally increased in different models of peripheral neuropathic pain and may be considered as a biomarker of chronic pain (Zhang and de Koninck, J. Neurochem. 97:772-783 (2006)). Haplotype analysis revealed a strong linkage disequilibrium (LD, r2 = 0.87) to the neighbouring gene CBS which encodes an endogenous H2S-producing enzyme. The CBS-H2S signalling pathway is implicated in the pathogenesis of a variety of neurodegenerative and inflammatory disorders, and specifically in neuropathy models (Takahashi et al., Pain, 150, 183-191, 2010). Conclusions: Our data provides evidence for susceptibility to BiPN in MM by variation in the PREP1-CBS locus, and suggests a new potential target in neuro-protective strategies of treatment. Validation of this finding may allow for the identification of patients at increased risk of BiPN which may benefit alternative treatments such as carfilzomib and better clinical management of this toxicity. Disclosures Sonneveld: Celgene: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Onyx: Honoraria, Research Funding; Millenium: Honoraria, Research Funding. Moreau:Celgene Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees.


2020 ◽  
Author(s):  
Songzan Chen ◽  
Fangkun Yan ◽  
Tian Xu ◽  
Yao Wang ◽  
Kaijie Zhang ◽  
...  

Abstract Background Although several observational studies have shown an association between birth weight (BW) and atrial fibrillation (AF), controversy remains. In this study, we aimed to explore the role of elevated BW on the etiology of AF. Methods A two-sample Mendelian randomization (MR) study was designed to infer the causality. The genetic data on the associations of single nucleotide polymorphisms (SNPs) with BW and AF were separately obtained from two large-scale genome-wide association study with up to 321,223 and 1,030,836 individuals respectively. SNPs were identified at a genome-wide significant level (p-value < 5 × 10− 8). The inverse variance-weighted (IVW) with fixed effects method was performed to obtain causal estimates as our primary analysis. MR-Egger regression was conducted to assess the pleiotropy and sensitivity analyses with various statistical methods were applied to evaluate the robustness of the results. Results In total, 122 SNPs were identified as the genetic instrumental variables. MR analysis revealed a causal effect of elevated BW on AF (OR = 1.21, 95% CI = 1.13–1.29, p-value = 2.39 × 10− 8). The MR-Egger regression suggested no evidence of directional pleiotropy (intercept = 0.00, p-value = 0.62). All the results in sensitivity analyses were consistent with the primary result, which confirmed the causal association between BW and AF. Conclusions The findings from the two-sample MR study indicate a causal effect of elevated BW on AF. This suggests a convenient and effective method to ease the burden of AF by reducing the number of newborns with elevated BW.


2012 ◽  
Vol 18 (10) ◽  
pp. 1384-1394 ◽  
Author(s):  
Filippo Martinelli-Boneschi ◽  
Federica Esposito ◽  
Paola Brambilla ◽  
Eva Lindström ◽  
Giovanni Lavorgna ◽  
...  

Background: The role played by genetic factors in influencing the clinical course of multiple sclerosis (MS) is not yet well established. Objective: We aimed to identify genetic variants associated with progressive MS (PrMS). Methods: We conducted a genome-wide association study (GWAS) in 197 patients with PrMS and 234 controls of Italian origin. We tested the top 20 single nucleotide polymorphisms (SNPs) with suggestive evidence of association ( p-value<10−4) in two independent sets of primary progressive MS cases and controls. Results: We identified a risk-associated SNP in the HLA region in linkage disequilibrium (LD) with DRB1*1501 and DQB*0602 loci, with genome-wide significance (rs3129934T, pcombined=6.7×10-16, OR=2.34, 95% CI=1.90–2.87), and a novel locus on chromosome 7q35 with suggestive evidence of association (rs996343G, pcombined=2.4×10-5, OR=0.70, 95% CI=0.59–0.83) which maps within a human endogenous retroviral (HERV) element. The new locus did not have a ‘ cis’ effect on RNA expression in lymphoblastic cell lines, but pathway analyses of ‘ trans’ effects point to an expression regulation of genes involved in neurodegeneration, including glutamate metabolism ( p<0.01) and axonal guidance signalling ( p<0.02). Conclusions: We have confirmed the established association with the HLA region and, despite the low statistical power of the study, we found suggestive evidence for association with a novel locus on chromosome 7, with a putative regulatory role.


Sign in / Sign up

Export Citation Format

Share Document