scholarly journals Sequence based prediction of protein phase separation into disordered condensates using machine learning

2021 ◽  
Author(s):  
Pratik Mullick ◽  
Antonio Trovato

Several proteins which are responsible for neuro-degenrerative disorders (Alzheimers, Parkinsons etc) are shown to undergo a mechanism known as liquid liquid phase separation (LLPS). We in this research build a predictor which would answer whether a protein molecule would undergo LLPS or not. For this we used some protein sequences for which we already knew the answer. The ones who undergo LLPS were considered as the positive set and the ones who do not, were taken as the negative set. Depending on the knowledge of amino-acid sequences we identified some relevant variables in the context of LLPS e.g. number of amino acids, length of the best pairings, average register shifts. Using these variables we built a number of scoring functions which were basically analytic functions involving these variables and we also combined some scores already existing in the literature. We considered a total of 43636 protein sequences, among them only 121 were positive. We applied logistic regression and performed cross validation, where 25% of the data were used as the training set and the performance of the obtained results were tested on the remaining 75% of the data. In the training process, we used Simplex algorithm to maximize area under the curve (AUC) in receiver operator characteristics (ROC) space for each of the scores we defined. The optimised parameters were then used to evaluate AUC on the test set to check the accuracy. The best performing score was identified as the predicting model to answer the question whether a protein chain would undergo phase separating behavior or not.

2020 ◽  
Author(s):  
Simon M. Lichtinger ◽  
Adiran Garaizar ◽  
Rosana Collepardo-Guevara ◽  
Aleks Reinhardt

AbstractRationally and efficiently modifying the amino-acid sequence of proteins to control their ability to undergo liquid-liquid phase separation (LLPS) on demand is not only highly desirable, but can also help to elucidate which protein features are important for LLPS. Here, we propose an innovative computational method that couples a genetic algorithm to a sequence-dependent coarse-grained protein model to evolve the amino-acid sequences of phase-separating intrinsically disordered protein regions (IDRs), and purposely enhance or inhibit their capacity to phase-separate. We apply it to the phase-separating IDRs of three naturally occurring proteins, namely FUS, hnRNPA1 and LAF1, as prototypes of regions that exist in cells and undergo homotypic LLPS driven by different types of intermolecular interaction. We find that the evolution of amino-acid sequences towards enhanced LLPS is driven in these three cases, among other factors, by an increase in the average size of the amino acids. However, the direction of change in the molecular driving forces that enhance LLPS (such as hydrophobicity, aromaticity and charge) depends on the initial amino-acid sequence: the critical temperature can be enhanced by increasing the frequency of hydrophobic and aromatic residues, by changing the charge patterning, or by a combination of both. Finally, we show that the evolution of amino-acid sequences to modulate LLPS is strongly coupled to the composition of the medium (e.g. the presence or absence of RNA), which may have significant implications for our understanding of phase separation within the many-component mixtures of biological systems.


2021 ◽  
Author(s):  
Aleksandra E. Badaczewska-Dawid ◽  
Davit A. Potoyan

AbstractLiquid-liquid phase separation (LLPS) has recently emerged as a cornerstone mechanism underlying the biogenesis of membraneless organelles (MLOs). However, a quantitative molecular grammar of protein sequences that controls the LLPS remains poorly understood. The progress in this field is hampered by the insufficiency of comprehensive databases and associated computational infrastructure for targeting biophysical and statistical analysis of phase separating biopolymers. Therefore, we have created a novel open-source web platform named BIAPSS (BioInformatic Analysis of liquid-liquid Phase-Separating protein Sequences) which contains interactive data analytic tools in combination with a comprehensive repository of bioinformatic data for on-the-fly exploration of sequence-dependent properties of proteins with known LLPS behavior. BIAPSS includes a residue-resolution biophysical analyzer for interrogating individual protein sequences (SingleSEQ tab). The latter allows users to correlate regions prone to phase separation with a large array of physicochemical attributes and various short linear motifs. BIAPSS also includes global statistics derived over the universe of most of the known LLPS-driver protein sequences (MultiSEQ tab) for revealing the regularities and sequence-specific signals driving phase separation. Finally, BIAPSS incorporates an extensive cross-reference section that links all entries to primary LLPS databases and other external resources thereby serving as a central navigation hub for the phase separation community. All of the data used by BIAPSS is freely available for download as well-formatted pre-processed data with detailed descriptions, facilitating rapid implementation in user-defined computational protocols.Abstract FigureTOC - graphical abstractAuthor summaryProteins, especially those with low complexity and intrinsically disordered regions, have recently come into the limelight because of mounting evidence showing that these regions can drive the formation of membraneless organelles (MLOs) in cells. The underlying physical mechanism for forming MLOs is liquid-liquid phase separation (LLPS); a thermodynamically driven process whereby a cellular milieu with a relatively well-mixed distribution of biomolecules gets decomposed into liquid droplets where the concentration of selected biomolecules is higher. Deciphering molecular sequence grammar of phase separation has turned out to be challenging because of the complexity of this process in cells and the vastness of sequence space of LLPS-driver proteins. While the field is still in its infancy the growth of experimental data has already spurred the creation of several major databases which collect and annotate bimolecular systems with confirmed LLPS behavior. What is currently missing is a framework that would leverage the existing databases by integrating them with deep biophysical and bioinformatic analysis for identifying statistically significant features of protein sequences implicated in LLPS. In this work, we have addressed this challenge by creating an open-source web platform named BIAPSS (BioInformatic Analysis of liquid-liquid Phase-Separating protein Sequences) which integrates a comprehensive repository of pre-processed bioinformatic data for LLPS-driver protein sequences with interactive analytic applications for on-the-fly analysis of biophysical features relevant for LLPS behavior. BIAPSS empowers users with novel and effective tools for exploring LLPS-related sequence signals for individual proteins (SingleSEQ tab) and globally by integrating common regularities across subgroups or the entire LLPS sequence superset (MultiSEQ). The long-term plan for BIAPSS is to serve as a unifying hub for the experimental and computational community with a comprehensive set of analytic tools, biophysically featured data, and standardized protocols facilitating the identification of sequence hot spots driving the LLPS, which all can support applications for designing new sequences of biomedical interest.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009328
Author(s):  
Simon M. Lichtinger ◽  
Adiran Garaizar ◽  
Rosana Collepardo-Guevara ◽  
Aleks Reinhardt

Rationally and efficiently modifying the amino-acid sequence of proteins to control their ability to undergo liquid–liquid phase separation (LLPS) on demand is not only highly desirable, but can also help to elucidate which protein features are important for LLPS. Here, we propose a computational method that couples a genetic algorithm to a sequence-dependent coarse-grained protein model to evolve the amino-acid sequences of phase-separating intrinsically disordered protein regions (IDRs), and purposely enhance or inhibit their capacity to phase-separate. We validate the predicted critical solution temperatures of the mutated sequences with ABSINTH, a more accurate all-atom model. We apply the algorithm to the phase-separating IDRs of three naturally occurring proteins, namely FUS, hnRNPA1 and LAF1, as prototypes of regions that exist in cells and undergo homotypic LLPS driven by different types of intermolecular interaction, and we find that the evolution of amino-acid sequences towards enhanced LLPS is driven in these three cases, among other factors, by an increase in the average size of the amino acids. However, the direction of change in the molecular driving forces that enhance LLPS (such as hydrophobicity, aromaticity and charge) depends on the initial amino-acid sequence. Finally, we show that the evolution of amino-acid sequences to modulate LLPS is strongly coupled to the make-up of the medium (e.g. the presence or absence of RNA), which may have significant implications for our understanding of phase separation within the many-component mixtures of biological systems.


2020 ◽  
Vol 17 (1) ◽  
pp. 59-77
Author(s):  
Anand Kumar Nelapati ◽  
JagadeeshBabu PonnanEttiyappan

Background:Hyperuricemia and gout are the conditions, which is a response of accumulation of uric acid in the blood and urine. Uric acid is the product of purine metabolic pathway in humans. Uricase is a therapeutic enzyme that can enzymatically reduces the concentration of uric acid in serum and urine into more a soluble allantoin. Uricases are widely available in several sources like bacteria, fungi, yeast, plants and animals.Objective:The present study is aimed at elucidating the structure and physiochemical properties of uricase by insilico analysis.Methods:A total number of sixty amino acid sequences of uricase belongs to different sources were obtained from NCBI and different analysis like Multiple Sequence Alignment (MSA), homology search, phylogenetic relation, motif search, domain architecture and physiochemical properties including pI, EC, Ai, Ii, and were performed.Results:Multiple sequence alignment of all the selected protein sequences has exhibited distinct difference between bacterial, fungal, plant and animal sources based on the position-specific existence of conserved amino acid residues. The maximum homology of all the selected protein sequences is between 51-388. In singular category, homology is between 16-337 for bacterial uricase, 14-339 for fungal uricase, 12-317 for plants uricase, and 37-361 for animals uricase. The phylogenetic tree constructed based on the amino acid sequences disclosed clusters indicating that uricase is from different source. The physiochemical features revealed that the uricase amino acid residues are in between 300- 338 with a molecular weight as 33-39kDa and theoretical pI ranging from 4.95-8.88. The amino acid composition results showed that valine amino acid has a high average frequency of 8.79 percentage compared to different amino acids in all analyzed species.Conclusion:In the area of bioinformatics field, this work might be informative and a stepping-stone to other researchers to get an idea about the physicochemical features, evolutionary history and structural motifs of uricase that can be widely used in biotechnological and pharmaceutical industries. Therefore, the proposed in silico analysis can be considered for protein engineering work, as well as for gout therapy.


2021 ◽  
Vol 433 (2) ◽  
pp. 166731
Author(s):  
Yanxian Lin ◽  
Yann Fichou ◽  
Andrew P. Longhini ◽  
Luana C. Llanes ◽  
Pengyi Yin ◽  
...  

Author(s):  
Yanting Xing ◽  
Aparna Nandakumar ◽  
Aleksandr Kakinen ◽  
Yunxiang Sun ◽  
Thomas P. Davis ◽  
...  

2021 ◽  
Author(s):  
Kazuki Murakami ◽  
Shinji Kajimoto ◽  
Daiki Shibata ◽  
Kunisato Kuroi ◽  
Fumihiko Fujii ◽  
...  

Liquid–liquid phase separation (LLPS) plays an important role in a variety of biological processes and is also associated with protein aggregation in neurodegenerative diseases. Quantification of LLPS is necessary to...


2021 ◽  
Author(s):  
Dean N. Edun ◽  
Meredith R. Flanagan ◽  
Arnaldo L. Serrano

Two-dimensional infrared spectroscopy reveals folding of an intrinsically disordered peptide when sequestered into a model “membrane-less” organelle.


Sign in / Sign up

Export Citation Format

Share Document