scholarly journals Intact rDNA arrays of Potentilla-origin detected in Erythronium nucleus suggest recent eudicot-to-monocot horizontal transfer

2021 ◽  
Author(s):  
Laszlo Bartha ◽  
Terezie Mandakova ◽  
Ales Kovarik ◽  
Paul Adrian Bulzu ◽  
Nathalie Rodde ◽  
...  

The occurrence of horizontal gene transfer (HGT) in Eukarya is increasingly gaining recognition. Nuclear-to-nuclear jump of DNA between plant species at high phylogenetic distance and devoid of intimate association (e.g., parasitism) is still scarcely reported. Within eukaryotes, components of ribosomal DNA (rDNA) multigene family have been found to be horizontally transferred in protists, fungi and grasses. However, in neither case HGT occurred between phylogenetic families, nor the transferred rDNA remained tandemly arrayed and transcriptionally active in the recipient organism. This study aimed to characterize an alien eudicot-type of 45S nuclear rDNA, assumingly transferred horizontally to the genome of monocot European Erythronium (Liliaceae). Genome skimming coupled by PacBio HiFi sequencing of a BAC clone were applied to determine DNA sequence of the alien rDNA. A clear phylogenetic signal traced the origin of the alien rDNA of Erythronium back to the Argentea clade of Potentilla (Rosaceae) and deemed the transfer to have occurred in the common ancestor of E. dens-canis and E. caucasicum. Though being discontinuous, transferred rDNA preserved its general tandemly arrayed feature in the host organism. Southern blotting, molecular cytogenetics, and sequencing of a BAC clone derived from flow-sorted nuclei indicated integration of the alien rDNA into the recipient's nuclear genome. Unprecedently, dicot-type alien rDNA was found to be transcribed in the monocot Erythronium albeit much less efficiently than the native counterpart. This study adds a new example to the growing list of naturally transgenic plants while holding the scientific community continually in suspense about the mode of DNA transfer.

2018 ◽  
Author(s):  
Johan Nygren

ABSTRACT: The Gorilla Genome Project (Scally, 2012) showed that 30% of the gorilla genome introgressed into the ancestor of humans and chimpanzees, and that the two species diverged through lineage sorting with 15% ending up in Pan and another 15% in Homo. That introgression is the Pan-Homo split, hybridization, which led to speciation as the new hybrid lineages became reproductively isolated from one another. The NUMT on chromosome 5 (“ps5”) (Popadin, 2017) fits perfectly with the introgression speciation model, it was formed from mtDNA that had diverged from the common ancestor of Pan-Homo for 1.8 Myr at the time of insertion into the nuclear genome, and originated in the Gorilla lineage. The ps5 pseudogene was transferred to Pan and Homo during the introgression event that led to the Pan-Homo split, 6 million years ago.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 307 ◽  
Author(s):  
Ivanete de Oliveira Furo ◽  
Rafael Kretschmer ◽  
Patrícia C. M. O’Brien ◽  
Jorge C. Pereira ◽  
Malcolm A. Ferguson-Smith ◽  
...  

Gruiformes is a group with phylogenetic issues. Recent studies based on mitochondrial and genomic DNA have proposed the existence of a core Gruiformes, consisting of five families: Heliornithidae, Aramidae, Gruidae, Psophiidae and Rallidae. Karyotype studies on these species are still scarce, either by conventional staining or molecular cytogenetics. Due to this, this study aimed to analyze the karyotype of two species (Aramides cajaneus and Psophia viridis) belonging to families Rallidae and Psopiidae, respectively, by comparative chromosome painting. The results show that some chromosome rearrangements in this group have different origins, such as the association of GGA5/GGA7 in A. cajaneus, as well as the fission of GGA4p and association GGA6/GGA7, which place P. viridis close to Fulica atra and Gallinula chloropus. In addition, we conclude that the common ancestor of the core Gruiformes maintained the original syntenic groups found in the putative avian ancestral karyotype.


2020 ◽  
Author(s):  
Ajith Harish ◽  
David A. Morrison

AbstractLocating the root-node of the “tree of life” (ToL) is one of the hardest problems in phylogenetics1. The root-node or the universal common ancestor (UCA) divides the descendants into organismal domains2. Two notable variants of the two-domains ToL (2D-ToL) have gained support recently3,4, though, Williams and colleagues (W&C)4 claim that one is better supported than the other. Here, we argue that important aspects of estimating evolutionary relatedness and assessing phylogenetic signal in empirical data were overlooked4. We focus on phylogenetic character reconstructions necessary to describe the UCA or its closest descendants in the absence of reliable fossils. It is well-known that different character-types present different perspectives on evolutionary history that relate to different phylogenetic depths5–7. Which of the 2D-ToL2,4 hypotheses is better supported depends on which kind of molecular features – protein-domains or their component amino-acids – are better for resolving the common ancestors (CA) at the roots of clades. In practice, this involves reconstructing character compositions of the ancestral nodes all the way back to the UCA2,3.


2019 ◽  
Vol 6 (7) ◽  
pp. 190387 ◽  
Author(s):  
Robert J. Asher ◽  
Martin R. Smith ◽  
Aime Rankin ◽  
Robert J. Emry

Given an evolutionary process, we expect distinct categories of heritable data, sampled in ever larger amounts, to converge on a single tree of historical relationships. We tested this assertion by undertaking phylogenetic analyses of a new morphology-DNA dataset for mammals, focusing on Glires and including the oldest known skeletons of geomyoid and Ischyromys rodents. Our results support geomyoids in the mouse-related clade (Myomorpha) and a ricochetal locomotor pattern for the common ancestor of geomyoid rodents. They also support Ischyromys in the squirrel-related clade (Sciuromorpha) and the evolution of sciurids and Aplodontia from extinct, ‘protrogomorph’-grade rodents. Moreover, ever larger samples of characters from our dataset increased congruence with an independent, well-corroborated tree. Addition of morphology from fossils increased congruence to a greater extent than addition of morphology from extant taxa, consistent with fossils' temporal proximity to the common ancestors of living species, reflecting the historical, phylogenetic signal present in our data, particularly in morphological characters from fossils. Our results support the widely held but poorly tested intuition that fossils resemble the common ancestors shared by living species, and that fossilizable hard tissues (i.e. bones and teeth) help to reconstruct the evolutionary tree of life.


2018 ◽  
Author(s):  
Johan Nygren

ABSTRACT: The Gorilla Genome Project (Scally, 2012) showed that 30% of the gorilla genome introgressed into the ancestor of humans and chimpanzees, and that the two species diverged through lineage sorting with 15% ending up in Pan and another 15% in Homo. That introgression is the Pan-Homo split, hybridization, which led to speciation as the new hybrid lineages became reproductively isolated from one another. The NUMT on chromosome 5 (“ps5”) (Popadin, 2017) fits perfectly with the introgression speciation model, it was formed from mtDNA that had diverged from the common ancestor of Pan-Homo for 1.8 Myr at the time of insertion into the nuclear genome, and originated in the Gorilla lineage. The ps5 pseudogene was transferred to Pan and Homo during the introgression event that led to the Pan-Homo split, 6 million years ago.


1983 ◽  
Vol 38 (5-6) ◽  
pp. 501-504 ◽  
Author(s):  
Mária Ujhelyi

Seryl tRNA (anticodon GCU) from mammalian mito­chondria shows in comparison to other mitochondrial tRNAs additional special features differing from the generalized tRNA model. When arranged in the tradi­tional cloverleaf form, eight bases fall within the TΨC loop, and the entire dihydrouridine loop is lacking. This seryl tRNA molecule is therefore shorter than other tRNAs. It was originally thought to represent a mito­chondrial analogon of 5 S rRNA and its precise classifica­tion is still disputed. The present studies suggest that this mitochondrial tRNA represents a fossil molecule which is related to the common ancestor of the present tRNA and 5 S rRNA molecules.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jeffrey S. Prince ◽  
Paul Micah Johnson

The ultrastructure of the digestive gland of several sea hare species that produce different colored ink (Aplysia californicaproduces purple ink,A. julianawhite ink,A. parvulaboth white and purple ink, whileDolabrifera dolabriferaproduces no ink at all) was compared to determine the digestive gland’s role in the diet-derived ink production process. Rhodoplast digestive cells and their digestive vacuoles, the site of digestion of red algal chloroplast (i.e., rhodoplast) inA. californica, were present and had a similar ultrastructure in all four species. Rhodoplast digestive cell vacuoles either contained a whole rhodoplast or fragments of one or were empty. These results suggest that the inability to produce colored ink in some sea hare species is not due to either an absence of appropriate digestive machinery, that is, rhodoplast digestive cells, or an apparent failure of rhodoplast digestive cells to function. These results also propose that the digestive gland structure described herein occurred early in sea hare evolution, at least in the common ancestor to the generaAplysiaandDolabrifera. Our data, however, do not support the hypothesis that the loss of purple inking is a synapomorphy of the white-ink-producing subgenusAplysia.


Parasitology ◽  
2014 ◽  
Vol 142 (S1) ◽  
pp. S120-S127 ◽  
Author(s):  
GARETH D. WEEDALL ◽  
NEIL HALL

SUMMARYA key part of the life cycle of an organism is reproduction. For a number of important protist parasites that cause human and animal disease, their sexuality has been a topic of debate for many years. Traditionally, protists were considered to be primitive relatives of the ‘higher’ eukaryotes, which may have diverged prior to the evolution of sex and to reproduce by binary fission. More recent views of eukaryotic evolution suggest that sex, and meiosis, evolved early, possibly in the common ancestor of all eukaryotes. However, detecting sex in these parasites is not straightforward. Recent advances, particularly in genome sequencing technology, have allowed new insights into parasite reproduction. Here, we review the evidence on reproduction in parasitic protists. We discuss protist reproduction in the light of parasitic life cycles and routes of transmission among hosts.


Author(s):  
Satoshi Nakano ◽  
Takao Fujisawa ◽  
Bin Chang ◽  
Yutaka Ito ◽  
Hideki Akeda ◽  
...  

After the introduction of the seven-valent pneumococcal conjugate vaccine, the global spread of multidrug resistant serotype 19A-ST320 strains became a public health concern. In Japan, the main genotype of serotype 19A was ST3111, and the identification rate of ST320 was low. Although the isolates were sporadically detected in both adults and children, their origin remains unknown. Thus, by combining pneumococcal isolates collected in three nationwide pneumococcal surveillance studies conducted in Japan between 2008 and 2020, we analyzed 56 serotype 19A-ST320 isolates along with 931 global isolates, using whole-genome sequencing to uncover the transmission route of the globally distributed clone in Japan. The clone was frequently detected in Okinawa Prefecture, where the U.S. returned to Japan in 1972. Phylogenetic analysis demonstrated that the isolates from Japan were genetically related to those from the U.S.; therefore, the common ancestor may have originated in the U.S. In addition, Bayesian analysis suggested that the time to the most recent common ancestor of the isolates form Japan and the U.S. was approximately the 1990s to 2000, suggesting the possibility that the common ancestor could have already spread in the U.S. before the Taiwan 19F-14 isolate was first identified in a Taiwanese hospital in 1997. The phylogeographical analysis supported the transmission of the clone from the U.S. to Japan, but the analysis could be influenced by sampling bias. These results suggested the possibility that the serotype 19A-ST320 clone had already spread in the U.S. before being imported into Japan.


Sign in / Sign up

Export Citation Format

Share Document