scholarly journals Biology and engineering of integrative and conjugative elements: Construction and analyses of hybrid ICEs reveal element functions that affect species-specific efficiencies

2021 ◽  
Author(s):  
Emily L Bean ◽  
Calvin Herman ◽  
Alan D. Grossman

Integrative and conjugative elements (ICEs) are mobile genetic elements that reside in a bacterial host chromosome and are prominent drivers of bacterial evolution. They are also powerful tools for genetic analyses and engineering. Transfer of an ICE to a new host involves many steps, including excision from the chromosome, DNA processing and replication, transfer across the envelope of the donor and recipient, processing of the DNA, and eventual integration into the chromosome of the new host (now a stable transconjugant). Interactions between an ICE and its hosts throughout the life cycle likely influence the efficiencies of acquisition by new hosts. Here, we investigated how different functional modules of two ICEs, Tn916 and ICEBs1, affect the transfer efficiencies into different host bacteria. We constructed hybrid elements that utilize the high-efficiency regulatory and excision modules of ICEBs1 and the conjugation genes of Tn916. These elements produced more transconjugants than Tn916, likely due to increased excision frequencies. We also found that several Tn916 and ICEBs1 components can substitute for one other. Using B. subtilis donors and three Enterococcus species as recipients, we found that different hybrid elements were more readily acquired by some species than others, demonstrating species-specific interactions in steps of the ICE life cycle. This work demonstrates that hybrid elements utilizing the efficient regulatory functions of ICEBs1 can be built to enable efficient transfer into and engineering of a variety of other species.

Author(s):  
Sarah L. Sokol-Borrelli ◽  
Rachel S. Coombs ◽  
Jon P. Boyle

Stage conversion is a critical life cycle feature for several Apicomplexan parasites as the ability to switch between life forms is critical for replication, dissemination, pathogenesis and ultimately, transmission to a new host. In order for these developmental transitions to occur, the parasite must first sense changes in their environment, such as the presence of stressors or other environmental signals, and then respond to these signals by initiating global alterations in gene expression. As our understanding of the genetic components required for stage conversion continues to broaden, we can better understand the conserved mechanisms for this process and unique components and their contribution to pathogenesis by comparing stage conversion in multiple closely related species. In this review, we will discuss what is currently known about the mechanisms driving stage conversion in Toxoplasma gondii and its closest relatives Hammondia hammondi and Neospora caninum. Work by us and others has shown that these species have some important differences in the way that they (1) progress through their life cycle and (2) respond to stage conversion initiating stressors. To provide a specific example of species-specific complexities associated with stage conversion, we will discuss our recent published and unpublished work comparing stress responses in T. gondii and H. hammondi.


2021 ◽  
Vol 13 (9) ◽  
pp. 4651
Author(s):  
Ming-Lun Alan Fong

The analysis of ventilation strategies is fundamentally affected by regional climate conditions and local cost databases, in terms of energy consumption, CO2 emission and cost-effective analysis. A systematic approach is covered in this paper to estimate a local economic and environmental impact on a medium-sized space located in two regions during supply-and-installation and operation phases. Three ventilation strategies, including mixing ventilation (MV), displacement ventilation (DV) and stratum ventilation (SV) were applied to medium-sized air-conditioned space with this approach. The trend of the results for three ventilation systems in the life cycle assessment (LCA) and life cycle cost (LCC) analysis is SV < DV < MV. The result of CO2 emission and regional LCC shows that SV is the lowest one in both regional studies. In comparison with the Hong Kong Special Administrative Region (HKSAR) during 20 Service years, the case analysis demonstrates that the percentage differences in LCC analysis of MV, DV & SV in Guangdong are less than 20.5%, 19.4% and 18.82% respectively. Their CO2 emission of MV, DV and SV in Guangdong are more than HKSAR in 10.69%, 11.22% and 12.05%, respectively. The present study could provide information about regional effects in the LCA and LCC analysis of three ventilation strategies emissions, and thereby help set up models for decision-making on high efficiency and cost-effective ventilation strategy plans.


2015 ◽  
Vol 4 (5) ◽  
pp. 222-225
Author(s):  
K. G. Li ◽  
G. P. Pogossian ◽  
A. K. Moldagulova ◽  
E. E. Bekenova ◽  
A. Abdikadirova ◽  
...  

  Lactobacilli are essential and important biological objects used in food pro-duction and medicine. One of the sufficient problems is fast, reliable and highly specific identification of lactobacilli in the scientific research and cur-rent production control. We represent two species-specific real-time PCR in the present study to discriminate L. rhamnosus and L. casei basing on the unique peptidoglycan-hydrolase genes p40 and p75 respectively. PCR pri-mers and probes were designed to provide high specificity discrimination via high temperature of PCR annealing stage. High efficiency of the reactions is provided by the size of amplified DNA fragments minimization. Reliable re-producibility of the target sequences amplification and fluorescence detec-tion provide a basis for the future creation of industrial test-systems for op-erational control in the production of fermented dairy products.


Parasitology ◽  
2016 ◽  
Vol 143 (14) ◽  
pp. 1824-1846 ◽  
Author(s):  
DANIEL P. BENESH

SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.


2002 ◽  
Vol 62 (3) ◽  
pp. 459-462 ◽  
Author(s):  
B. M. M. FERNANDES ◽  
R. M. PINTO ◽  
S. C. COHEN

Two species of Digenea were recorded for the first time in South America and in new hosts: Acanthostomum spiniceps (Looss, 1896) (Cryptogonimidae) was reported from Astroscopus sexspinosus (Steindachner, 1877) (Uranoscopidae) and Diplomonorchis sphaerovarium Nahhas & Cable, 1964 (Monorchiidae) from Ophichthus gomesi (Castelnau, 1855) (Ophichthidae). From the latter, Heliconema heliconema Travassos, 1919 (Nematoda, Physalopteridae), was also recovered representing also a new host for this nematode species.


2021 ◽  
Author(s):  
Joanne S. Griffin ◽  
Michael Gerth ◽  
Gregory D. D. Hurst

AbstractHeritable symbionts represent important components of host biology, both as antagonistic reproductive parasites and as beneficial protective partners. An important component of heritable microbes’ biology is their ability to establish in new host species, a process equivalent to a host shift for an infectiously transmitted parasite or pathogen. For a host shift to occur, the symbiont must be compatible with the host: it must not cause excess pathology, must have good vertical transmission, and possess a drive phenotype that enables spread. Classically, compatibility has been considered a declining function of genetic distance between novel and ancestral host species. Here we investigate the evolutionary lability of compatibility to heritable microbes by comparing the capacity for a symbiont to establish in two novel host species equally related to the ancestral host. Compatibility of the protective Spiroplasma from D. hydei with D. simulans and D. melanogaster was tested. The Spiroplasma had contrasting compatibility in these two host species. The transinfection showed pathology and low vertical transmission in D. melanogaster but was asymptomatic and transmitted with high efficiency in D. simulans. These results were not affected by the presence/absence of Wolbachia in either of the two species. The pattern of protection was not congruent with that for pathology/transmission, with protection being weaker in the D. simulans, the host in which Spiroplasma was asymptomatic and transmitted well. Further work indicated pathological interactions occurred in D. sechellia and D. yakuba, indicating that D. simulans was unusual in being able to carry the symbiont without damage. The differing compatibility of the symbiont with these closely related host species emphasises first the rapidity with which host-symbiont compatibility evolves despite compatibility itself not being subject to direct selection, and second the independence of the different components of compatibility (pathology, transmission, protection). This requirement to fit three different independently evolving aspects of compatibility, if commonly observed, is likely to be a major feature limiting the rate of host shifts. Moving forward, the variation between sibling species pairs observed above provides an opportunity to identify the mechanisms behind variable compatibility between closely related host species, which will drive hypotheses as to the evolutionary drivers of compatibility variation.


2018 ◽  
Vol 23 (2) ◽  
pp. 387 ◽  
Author(s):  
Fabrício Hiroiuki Oda ◽  
Clóvis Kitagawa ◽  
Janaina Da Costa Noronha ◽  
Domingos De Jesus Rodrigues ◽  
Thiago Fernandes Martins ◽  
...  

Our study yielded a list of ticks found on amphibians and reptiles at five sites within seasonally dry Amazon forest in Mato Grosso State, central Brazil, in addition to new host records for A. rotundatum. We collected 431 tick specimens: 79 larvae, 115 nymphs, 38 females, and 199 males belonging to A. humerale, A. rotundatum, and Amblyomma sp., on 39 anurans and 21 reptiles. The toads R. guttatus and R. margaritifera and the frog L. pentadactylus are new hosts for A. rotundatum.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1005 ◽  
Author(s):  
Jennifer L. Elliott ◽  
Sebla B. Kutluay

The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis.


1985 ◽  
Vol 117 (4) ◽  
pp. 481-493 ◽  
Author(s):  
J.R. Byers ◽  
D.L. Struble ◽  
J.D. Lafontaine

AbstractThe species previously recognized as Euxoa ridingsiana (Grt.) is shown to be composed of a sympatric pair of sibling species, Euxoa ridingsiana (Grt.) and Euxoa maimes (Sm.), which in the laboratory will produce viable F1 hybrids but no F2. Results of F1 sib and backcrosses show that the F1 males are fertile and the F1 females are infertile. In mating-bias tests conducted in laboratory cages, 74% of matings were conspecific and 26% interspecific. Differences in the diel periodicities of mating, which are about 2 h out of phase, may account for the mating bias. The duration of development of E. ridingsiana in the laboratory and its seasonal flight period in the field are about 2 weeks in advance of that of E. maimes. However, there is considerable overlap of the flight periods and, with the tendency of females of both species to mate several times, it is unlikely that the difference in seasonal emergence is enough to effect reproductive isolation. It is evident that, under natural conditions, reproductive isolation can be maintained entirely by species-specific sex pheromones. This mechanism of reproductive isolation is, however, apparently ineffective when moths are confined in cages in the laboratory.Biogeographic considerations suggest that the differences in life-cycle timing and mating periodicities might have been adaptations to adjust development and reproduction to prevailing ancestral environments. If the initial differentiation of the 2 species occurred in isolation and included at least an incipient shift in the pheromonal mate-recognition system, it is possible that upon reestablishment of contact between ancestral populations the differences in life-cycle timing and mating periodicities acting in concert could have effected substantial, albeit incomplete, reproductive isolation. Subsequent selection to reinforce assortative mating to preserve coadapted gene complexes could then have resulted in differentiation of discrete pheromonal systems and attainment of species status.


1928 ◽  
Vol 18 (4) ◽  
pp. 359-364 ◽  
Author(s):  
W. R. Thompson ◽  
H. L. Parker

During the last few years a number of papers have been published by entomologists in connection with the hypothesis known as the “ Hopkins host-selection principle.” This principle, as defined by Dr. A. D. Hopkins himself, is that an insect species that breeds in two or more hosts will continue to breed in the host to which it has become adapted. Thus, according to this author, the mountain pine beetle, Dendroctonus monticola, will destroy mountain pine, yellow pine, lodgepole pine and sugar pine, but if it becomes established in one species of pine through many generations, the beetles on emergence show a decided preference for the species in which they have bred and will not, in fact, attack any other. In 1922 Craighead published a paper giving the results of experiments carried on during a number of years with about a dozen species of Cerambycids. He states that in practically all the species studied the adults show a marked predilection for the host in which they have fed as larvae, provided that they are not deterred by other factors. Continued breeding in a given host is said to intensify the preference for that host. With some beetles whose larvae can be transferred to another species of plant and successfully reared therein, this association with the new host for a year, or even less, during the latter part of the larval life is said to determine a preference for this in the resulting adults. The author believes that his experiments may indicate the mode of origin of certain closely related species or varieties. The conclusions at which he has independently arrived were long ago suggested by Walsh. That new forms do not thus arise more rapidly in Nature, Craighead considers to be due to the high mortality of the young larvae in the new hosts.


Sign in / Sign up

Export Citation Format

Share Document